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Abstract

Rapid advancements in telecommunication devices and the emergence of the mobile

app ecosystem have immensely impacted our lives. Innovative apps have helped

improve market efficiency in agriculture, contributed to environmental sustainability

through peer-to-peer sharing services, and stimulated financial inclusion in developing

economies. However, mobile app developers have to deal with challenges that can

hinder the app to reach its full potential. In order to achieve commercial success

in the hyper-competitive business landscape where freemium business models are

dominating, developers need deep understanding on how non-price operational levers

such as product design, delivery, and continued service lead to user adoption.

From the two essays that comprise this dissertation, the first essay aims to explain

user downloads of free mobile apps during the introduction stage in the lifecycle based

on app feature designs and launch timings. The second essay estimates the effect of

app enhancement updates on app downloads and explores contextual factors such as

update regularity, lifecycle stage, and market activity levels that may further influence

the effectiveness of the enhancements. Research questions proposed in the essays are

answered by statistical analysis of heteroskedasticity-based instrumental variables

regression and difference-in-differences analysis on free iOS mobile game app data

acquired from app market Application Programming Interface (API) that contains

daily performance observations over a 3.5-year time horizon. Data extraction and

sample construction relied on naive Bayes tf-idf document classification algorithms

and Bass diffusion model predictions which are performed via multi-thread processing

on a high-performance cluster computing (HPC) server.
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Our findings suggest that mobile app developers focus on building rich features

rather than diversifying features to scale the user base during the introduction stage

quickly. Results also show significant interactions between features and market ac-

tivity whereby market activity-based launch timing strategies are more beneficial for

simpler apps. Moreover, our analysis reveals that while an enhancement update is

beneficial for an app’s performance, its effect can be further reinforced depending on

the regularity of update schedules, lifecycle stage of the update, and market activity

levels of the time of update in the decline stage. We also find that these effects can

significantly increase the lifespan of the app. Future research can investigate whether

the findings are generalizable to other app categories and software service contexts.
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Chapter 1

Introduction

1.1 Introduction and Motivation for the Study

Over the past ten years, we have witnessed a remarkable growth in mobile applica-

tions and enjoyed the convenience and economic benefits that these applications have

brought to us. These mobile applications have become increasingly important in our

lives and businesses by often disrupting existing business models and fostering new

business practices. For example, sharing economy apps such as Airbnb and Uber

have shown that mobile apps can disrupt well-established industries. Similarly, Apps

developed by mobile money service providers such as Safaricom have contributed to

the financial inclusion of the under-served population in developing economies, and

agriculture apps have helped to resolve the information asymmetry in the crop spot

price market. However, most of all, the expansion of the app market and successful

transition towards the mobile app ecosystem has been mostly driven by mobile games.

Mobile games comprise over 85% of the revenue generated in the mobile app store

(Perez, 2013). The most advanced technologies in terms of visuals and features are

first experimented with in the gaming category before being disseminated to other

app categories, making the gaming category the technology driver in the app market

as well. Highly successful mobile games such as Clash of Clans and Angry Birds have

changed mobile entertainment for the millennial generation.

Although mobile apps have transformed consumer lives and business practices,

developers constantly struggle with challenges that are unique to this market, its
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development process, and user characteristics. In order to continue innovations in

this fast-paced growing environment, we need a better understanding of how the

three facets of market, developer, and users interact and shape the success of mobile

applications. Although there has been research that aims to uncover the success

factors of mobile apps (Liu, Au, and Choi, 2014; Lee and Raghu, 2014; R. Garg

and Telang, 2013; Ghose and Han, 2014), a comprehensive study addressing the

unique structure and management strategies over the entire life cycle of mobile apps

is critically needed.

The market environment of mobile apps is hyper-competitive with low entry bar-

riers and willingness to pay. Hypercompetition is characterized by intense and rapid

competitive moves, in which players constantly search for competitive advantage and

erode their competitors’ strengths (D’aveni, 2010). It is often cited that the software

industry is the most hypercompetitive environment because innovations (S. L. Brown

and Eisenhardt, 1997), technological change (Schmalensee, 2000), and turbulence in

profitability (Baldwin and Clark, 2000) constantly change. However, the mobile app

market within the software industry takes this even further. Average app releases per

day can be as high as 4,032 (See Figure 1.1). In addition, because users are hesitant

in paying for mobile apps, more and more developers are adopting the freemium busi-

ness model. Freemium business model refers to a business model that offers the app

download for free and extracts revenue from in-app purchases or in-app advertise-

ments. These type of revenue streams accrue slowly over time compared to upfront

pricing, and scales proportionally to the size of the user base. Because mobile apps

are experience goods which require usage experience for an accurate evaluation of the

quality, the freemium business model effectively reduces the burden of trying out the

product. Over time, the mobile app revenue generated by freemium apps has grown

from 77 % in early 2013 (i.e., $20 billion worldwide) to over 95% by 2018 (i.e., $83.6

billion worldwide) (Taube, 2013). While prior research in the mobile app domain

2



considers the pricing as an important aspect of understanding the market structure,

the prevalence of freemium apps diminishes the role of pricing. As such, there is a

need for more research that looks into non-price-based competition factors.

Figure 1.1: iOS App Store: App Releases per Day (Source: Localytics)

The developers of mobile apps are mostly small firms with limited resources

(Panko, 2018). As shown in Figure 1.2(a), over 50% of the firms employ less than 50

developers, and a significant number of firms employ less than ten employees (Clutch,

2018). Although there are a large number of app developers, only a small number of

successful firms are capable of generating large revenue streams. For example, very

successful apps such as Clash of Clans generate over $1.5 million per day, whereas an

average app is only able to generate $4,000 per day (See in Figure 1.2(b)). This shows

the winner-takes-all nature of the mobile app marketplace competition. Mobile app

developers need to shorten time-to-market, while also minimizing development cost

to stay relevant in this competition.

At the same time users in the app market are becoming increasingly demanding,

with apps showing high churn rates. According to a survey by a mobile app market

analytics firm AppDynamics, over 56% of the responders believe that their expec-

3



(a) Developer Size (Source: Clutch.io) (b) Daily Revenue of Top Ranked Apps
(Source: Statista)

Figure 1.2: Mobile App Developer Profiles

tations of app performance are increasing over time, but do not want to deal with

overcomplicated features in the app (Brauer, 2014). As a result, mobile app devel-

opers are having difficulties in keeping these increasingly demanding users engaged

in the app. The retention rate of mobile apps falls below 50% just 3-4 months after

the launch. Mobile games lose 50% of their user base just within two months since

launch (See Figure 1.3) (Gordon, 2018).

Figure 1.3: Mobile App Median Half Life in Months (Source: Flurry Analytics)
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Taking all these factors into account, the resulting app life cycle shows a unique

condensed pattern. Mobile app users accumulate instantaneously in the early stage

of the life cycle, followed by a constant decay in adoption. Compared to apps that are

short-lived, apps that have a longer life cycle show a striking difference in the early

stage user base size (See Figure 1.4). The early stage user base size is important for

app developers as it facilitates network effects that further enhance the quality of the

app through user generated content and its subsequent revenue generation potential

from in-app purchases and advertisements.

Figure 1.4: Average Daily Active Users Since Launch

To cope with the unique challenges that developers face in the mobile app market,

the use of freemium business models is natural. In order to reduce risk, developers

need to also bring down the cost and time-to-market of their development projects

âĂŞ this is generally done through agile development (See Figure 1.5). One key com-

ponent of agile development is the use of code generators and software packages, also

known as software development kits (SDKs). SDKs are mostly open source developed

modularized code libraries that conveniently add certain features to the mobile app

5



under development. Additionally, developers conduct various forms of beta testing

and pre-market sensing activities before the app launch. In the final operations phase,

the developers make the final decision on when to deploy the app in the market. Even

after the app is launched, there is a significant amount of content that is held back

into post-launch updates. These updates not only include responsive bug fixes and

patches, but also new content and events held in the app to further stimulate the

download and engagement of the users over the app’s lifetime. The introduction

of new content and addressing issues within the app through bug fixes and patches

are all referred to as software maintenance practices. Although app developers are

not introducing a new product into the market, substantial content updates for a

preexisting mobile app involve significant investments and careful planning as such.

Figure 1.5: Software Development Lifecycle (adapted from (Tuzin et al., 2019))

Although mobile applications have received much research attention recently, no

research study has taken a look at the big picture containing the interactions between

the market, user, and developer strategies (See Figure 1.6). Also along the continuum

of the software development life cycle, there are missing links in our understanding on

how to effectively design the app features and maximize app market potential through

a carefully planned entry strategy. While prior research in the context of mobile apps

has investigated the implications of portfolio management (Lee and Raghu, 2014),

demand prediction (R. Garg and Telang, 2013; Ghose and Han, 2014), and customer
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feedback (Liu, Au, and Choi, 2014), little is known about the impact of design and

development, deployment timings, and app maintenance strategies. To this end, we

present the following questions to form the basis for the research contained in this

dissertation.

1. What are the impacts of feature design on the early stage user base expansion

of a mobile app?

2. How does the launch timing of the app affect the customers’ perceptions toward

app feature design?

3. Why are some enhancement updates more effective than others?

4. How should mobile app developers schedule their enhancement updates?

Figure 1.6: Conceptual Framework
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1.2 Research Objectives & Model

The objectives of this dissertation are three folds. First, by investigating the relation-

ship between app feature richness and diversity decisions, and the early stage user

base size, we can understand how the complexity of the app feature design affects the

user’s experience and perception of the app’s quality. Second, by examining the im-

pact of the market activity level at the time of app launch, we can learn about how a

market activity-based product launch timing strategy can further enhance the perfor-

mance of the application. Moreover, the interactions between the feature complexity

and market activity levels can show how decisions about each dimension influences

one another. Third, by estimating the app’s performance improvement through each

content update under various circumstances, we can understand how app characteris-

tics and market characteristics alter the effectiveness of those updates. Findings may

provide crucial input to developers by aiding the formulation of software maintenance

strategies.

To answer the research questions and achieve the objectives put forth in this

dissertation, a novel dataset was extracted from a proprietary applications program-

ming interface (API) server that contains detailed information on app characteristics,

developer characteristics, and market performance metrics. A combination of econo-

metrics, machine learning, and big data analytics was deployed to analyze the data.

To enhance the causal inference of the models, endogeneity concerns were accord-

ingly addressed, and as shown in the Appendices, various checks were developed to

demonstrate the robustness of the findings.

1.3 Dissertation Outline

This dissertation is arranged as follows. Chapter 2 presents the empirical investigation

regarding the implications of key operations decisions on product design and market

8



entry timing on the early stage user base size of free mobile applications. Chapter 3

studies the subsequent stage in the app’s life cycle and the implications of software

maintenance practices, which are also known as updates. Both chapters 2 and 3

contain a survey of the relevant literature, and discussions about the data, empirical

model, and the main findings. Finally, Chapter 4 states the main conclusion and

suggestions for future research based on the investigations made in this dissertation.

9



Chapter 2

Product Design and Launch Strategies for

Free Mobile Applications

Abstract

Nowadays, mobile apps are converging towards the freemium business model which

shows extremely short lifecycles with almost instantaneous demand saturation. Be-

cause most of the freemium apps rely on user content generation and network effects

to enhance quality, we focus on the early stage user base size at the demand sat-

uration point as a key indicator of app success. Instead of the four-stage product

lifecycle management and pricing strategies which are becoming irrelevant, we focus

on pre-launch decisions such as product feature choice and market launch timing and

estimate their impact on the early stage user base size. The dataset is extracted

from a proprietary application programming interface (API) which contains daily

app performance and file structure information of 1,782 free iOS gaming apps in the

U.S. over 3.5 years. We propose a framework of categorizing product feature choice

as a decision of the number of features (feature richness) and the different types of

features (feature diversity) in the app, and a market launch timing strategy based on

market seasonal downloading activity at the time of launch. Findings show significant

positive effects of feature richness and adverse effects of feature diversity on launch

success. This feature choice also interacts with market activity which indicates sig-

nificant preference shifts between seasonal and non-seasonal users. Post-hoc analyses

reveal monetization-quality trade-off and developer learning effects in feature choices.

10



Our study provides both academic as well as managerial insights on how product ar-

chitectures impact the effectiveness of market entry timing strategies.

Keywords: Mobile apps, software development kits, seasonality, organizational learn-

ing

2.1 Introduction

Increased penetration of smartphones, combined with higher mobile bandwidth and

cellular microprocessor capabilities, is impacting our lives as mobile apps conveniently

organize our daily activities (e.g., fitness, travel, shopping, financial management) and

entertainment (e.g., gaming, social media, multimedia). As a result, consumers are

spending more time on their mobile devices. Comparing the daily time spent amongst

US millennials from 2012 to 2017, statistics show an increase from 107 minutes to 223

minutes (Statista, 2018b). Relatedly, mobile app markets are exponentially growing,

with iOS apps alone having accumulated over 170 billion downloads and consumer-

spending of $130 billion between July 2010 and December 2017 (Cheney, 2018).

The two commonly used business models in the mobile app sector are the paid and

freemium models. In the paid model, users pay an upfront price before downloading

the mobile app. On the other hand, in a freemium model, the mobile app download is

free, and the user pays for optional value-added services and features. The freemium

business model helps user-base expansion by reducing user-entry cost. The most no-

table example of a successful freemium product is Angry Birds 2, which accumulated

a large user base in a very short period (Grundberg, 2012). Over time the preferred

business model has gravitated towards freemium apps, which currently account for

over 90% of the revenue generated from apps listed on the iOS and Android platforms

(Perez, 2013). The success of freemium apps relies on user generation of content to

increase engagement and improve user experience, both of which in turn can influ-

ence in-app advertisements and merchandise sales, the two primary sources of revenue

11



for freemium apps. Reliance on user generation of content requires freemium apps

to quickly achieve a critical mass of users. The free nature of the app, along with

the importance of user network effects in the success of freemium apps, makes this

app segment hypercompetitive with condensed app lifecycles and the winner-takes-all

nature of the competition.

As a result of these trends, we see a product lifecycle for the freemium mobile apps

which differs significantly from traditional product life cycles (Downes and Nunes,

2014). This segment has a compressed product lifecycle with exponential growth in

the initial stages, followed by gradual decay. In most apps, this exponential growth

and peak number of users is achieved within a few days to weeks of the app launch.

Achieving exponential growth introduces unique operational challenges for mobile

app developers, most of whom have limited resources (Panko, 2018). Due to the

importance of mobile app launch and initial user growth in determining success,

we focus on operational and market-level factors that influence the initial success

of freemium gaming apps. Ramachandran and V. Krishnan, 2008 identify product

design, launch timing, and pricing as critical factors in determining the commercial

success of technology products in an industrial setting.

Prior work on mobile apps has not looked at the challenges associated with product

development and factors contributing to launch success. Specifically, in the mobile

app context, previous academic research has uncovered the linkage between user

ratings (Liu, Au, and Choi, 2014), portfolio strategies (Lee and Raghu, 2014), and

pricing (R. Garg and Telang, 2013; Ghose and Han, 2014) on app performance.

Much of this research focuses on price-based competition models which fall short

in explaining the heterogeneous in-app user base of free apps, its unique lifecycle

characteristics, and factors that contribute to their initial success. Since pricing is

not a consideration for freemium apps, as per Ramachandran and V. Krishnan, 2008,

we focus this paper on studying the impact of feature design and launch timing only
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on app launch success.

Nowadays, developers are increasingly relying on modularized software develop-

ment kits (SDKs) to add features to their apps. SDKs are open-source developed

and represent modularized, pre-tested, reusable codes that enable firms to add spe-

cific app features with low cost (Atreyi, Ye, and Teo, 2015; Dalmasso et al., 2013).

This provides a huge benefit to developers because the majority of them are small-

sized businesses with limited resources (Panko, 2018). However, industry reports are

recently expressing concerns that there might be too many SDKs installed in a sin-

gle app, which in turn may undermine the app’s performance (Shoavi, 2017). Even

though few guidelines are available, addressing the management of feature complex-

ity with increased use of SDKs has become critically important. To do so, we first

estimate the impact of the richness and diversity of feature complexity on the app’s

performance by using the apps’ SDK composition information that is identified from

reverse-engineered file structures. Here, feature richness is defined as the number of

SDKs installed (depth or intensity of available features) in the app, whereas feature

diversity refers to the number of distinct features (breadth or heterogeneity) available

in the app.

Identifying the optimal product launch time is known to be an essential opera-

tional decision, especially for new products with relatively short life cycles (August,

Dao, and Shin, 2015; Calantone et al., 2010). Industry reports suggest that signifi-

cant seasonal boosts in market demand depend on the month or weekday the app was

launched (Datta and Kajanan, 2013). Apps that carefully plan their launch timings

can benefit from lower user-acquisition costs and reach peak downloads more effi-

ciently. Therefore, we suggest market activity as another critical factor to consider

when determining product launch times and exploit advancements in app market in-

telligence that provides information on daily sales of all products in the market. In

our study, we define market activity as the seasonality component of the subcategory
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market demand trends at the time of app launch (Hodrick and Prescott, 1997).

Though this paper, we aim to answer the following research questions: “what

are the individual and joint impacts of feature diversity and richness on the early-

stage-user-base expansion of a mobile app?” and “how do seasonal and non-seasonal

customers perceive app feature diversity and richness?” To answer these research

questions, we formulate an instrumental variables regression model and estimate the

effect of feature complexity (richness and diversity), launch timing, and their interac-

tion effects on the app’s performance. The initial success of mobile apps is gauged by

using the magnitude of the initial peak in number of daily active users. This measure

counts the number of users that accessed the app at least once on a given day, mak-

ing it a good indicator of the user base size. The empirical dataset is extracted from

a proprietary application programming interface (API) server which contains daily

panel observations of 1,782 free mobile gaming iOS apps in the U.S. over a period of

3.5 years. In this paper, we focus in particular on mobile gaming apps because they

provide us with a great setting for our study. Research characterizes the mobile games

as possessing the highest degree of competition intensity, thus showing the shortest

average lifespan (Gordon, 2018) among all app categories. Consequently, developers

in this category continuously experiment with novel development processes and adopt

cutting-edge technologies to expand the user base and prolong app lifespan. This is

evident in the average app development cost (Dogtiev, 2018) and the average number

of SDKs embedded in gaming apps - the highest across all app categories. Second,

gaming apps are the revenue-driving category for the entire market, and there is a

high degree of heterogeneity in performance because of the winner-takes-all nature of

this industry. The mobile gaming revenue, which consists 31% of the users’ mobile

device spending (Newzoo, 2016) , is anticipated to grow from $36.5 billion in 2016 to

$74.5 by 2020 (Statista, 2018a). A small number of well-established apps are taking

the lion’s share of the generated revenue. For example, a popular app like Clash of
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Clans makes over $2.4 million per day while an average app earns $4,000 (Strauss,

2013).

Our results show that a unit increase in feature richness leads to a 6.8% increase

in daily active users at the introduction stage, while a unit increase in feature diver-

sity leads to a 23.1% decrease. We also find significant interactions between feature

richness and diversity, whereby achieving high feature richness and diversity simulta-

neously can mitigate the negative effect of feature diversity. We call this the enhancing

effect of feature richness. Furthermore, we observe significant interactions between

feature diversity and market activity, which suggests that apps with less feature di-

versity benefit more from market activity-based launch decisions. In order to identify

feature diversity mitigation strategies, we conduct post-hoc analyses to better un-

derstand the drivers behind the negative impact of feature diversity. Results of the

post-hoc analyses reveal that monetization related features drive the negative impact

of feature diversity, while publisher experience attenuates feature diversity’s negative

impact on launch success. This result confirms a trade-off relationship between user

experience quality and developer monetization features. Findings call for a careful

balance between these two opposing forces. Finally, our result suggests that adding

more feature categories should be a strategy that should be pursued only by more

experienced publishers.

The remainder of this paper is organized as follows. We first survey the relevant

literature and develop our hypotheses in Section 2.2. We describe the data and

variables in Section 3 and formulate the econometric model in Section 4. Analysis

results are reported in Section 5. Finally, we discuss the theoretical and managerial

implications of our findings followed by limitations of this study in Section 6.
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2.2 Literature Review

In this section, we review several closely related papers on product design and launch

timing strategies that are relevant to the context of freemium mobile apps. We

conducted an extensive review of papers in operations management, marketing, and

information systems to identify gaps in the literature.

2.2.1 Mobile app design and feature complexity

Mobile app developers face challenges that are different from other product design and

development settings. Most of these app developers are small start-up companies with

less than 50 employees (Clutch, 2018). Due to these constraints, app development

budgets are tight (generally below $250,000) with development time less than three

months to ensure quick time-to-market. In this short time, developers are pressed

to develop apps compatible across multiple platforms in order to maximize the app’s

market reach and add advanced features which may require interactions with other

apps or sensory modules (e.g., accelerometer, GPS, microphone, cameras) installed in

the device. Given these constraints, app developers rely on two strategies to optimize

their effort and return on investment: 1) they use software development kits (SDKs)

- programming packages or collections of software code libraries that add various

features to apps, to quickly add desired features (refer to Table 2.1 for additional

details on SDKs) and 2) they generally launch an incomplete product in the market

and source content and response from users. Further features are developed and

added based on the initial market response for the app.

Given the criticality of user-generated content on the app’s commercial success,

developers face an important decision on the feature set to include in the launched app

that will be most effective in increasing the user base. In the extant literature, features

are used synonymously with complexity and refer to the number of components and

degree of technical novelty required for a product system (Wang and Tunzelmann,
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Table 2.1: List of App Feature Categories and Example SDKs

Features Description Example SDK

Analytics SDKs that measure and report standard in-
app metrics such as pageviews, bounce rate,
churn rate, UX data.

Firebase, Flurry, Mixpanel,
Localytics, Amplitude,
Appsee

Crash
Reporting

SDKs that provide comprehensive crash re-
ports, real-time processing, and alerts, smart
charts on crash trends and insights

Crashlytics, Firebase Crash
Reporting, HockeyApp,
Bugly

Development
Tools

SDKs that provide the operating system plat-
form for mobile app development

iOS SDK, Android SDK,
Unreal SDK, Unity

Multiplayer
Platform

SDKs that provide multiplayer support and
progress tracking

Photon, GameCenter,
Mobage

Social Sharing SDKs that provide SNS connection for sharing
content

Facebook, Twitter,
APShareKit, Instagram

Messaging SDKs that provide user chatting features in
the app

Hyphenate, JivoChat,
360Dialog

Testing/Beta
management

SDKs that allows internal beta tests or
through a selective set of users and generate
metrics and reports

Testfairy, Lookback,
Testflight, Leantesting,

Attribution SDKs that assesses user events such as
downloads/installs/in-app purchases and re-
late to acquisition channels

Appsflyer, Kochava,
Adjust, Tune, Branch

Datahubs SDKs that deal with database connections and
provide convenient app data management in-
terfaces

Charito, Fivetran,
Segment, mparticle

Engagement Marketing Automation & Push Notification OneSignal, Branch, Urban
Airship, Localytics, Braze

App store
intelligence

SDKs that provide information about how the
app is performing in the app store as well and
mapping the app store, business, or marketing
ecosystem in the market

App Annie, Sensor Tower,
Apptweak,

Monetization/
Advertising

SDKs that provide additional means of mone-
tization through in-app advertisements, mar-
ketplace deals, and cross-promotion

Google Mobile Ads,
Facebook, Chartboost,
AppLovin, MoPub

Acquisition/
Re-Targeting

SDKs that provide means for user re-
engagement such as referral and loyalty pro-
grams

Applift, Appvirality

Payment SDKs that provide apps with an easy payment
solution to help apps process payments

OpenIAB, Card.io, Skubit,
PayPal, AndroidPay

Location SDKs that allow apps to track users’ location
and use geolocation as a tool for mobile mar-
keting, push notifications, monetization, and
provide relevant information to users

Factual, Geomoby, Radar,
Skyhook, Reveal mobile

Source: Appsee, 2018; SafeDK, 2018
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2000). It is known that complexity consists of multiple dimensions such as depth and

breadth of the product and service features (Benedettini and Neely, 2012; Jacobs

and Swink, 2011; Meyer and Curley, 1991). This classification of complexity based

on depth and breadth of features fits well for entertainment products as well.

In the context of mobile apps, we define the depth and breadth dimensions of prod-

uct complexity as feature richness and feature diversity. Feature richness is measured

by the total number of SDKs of an app, whereas feature diversity is measured by the

number of distinct feature categories in the app. This is a similar adaptation of the

NK-type product complexity measurement (Vickery et al., 2016), where N represents

the number of components, and K represents the coupling or dependence between the

components (Kauffman and Weinberger, 1989). Consider the social sharing feature

in mobile applications as an example. While the addition of a single Facebook SDK

enables the social sharing feature in an app, the developer can choose to increase

feature richness by installing additional SDKs that pertain to the social sharing fea-

ture such as Twitter and Instagram. Conversely, if the developer chooses to add

Geomoby, which adds geographical location-based services in the app, the number

of distinct features and feature diversity in the app increases. For users, increasing

feature richness by installing multiple SDKs in a single feature category can enhance

the capabilities of that feature by broadening the selection for users or by enhancing

the aesthetics of the interface (Rozendaal et al., 2009). On the other hand, increasing

feature diversity may potentially make users feel uncertain about their choices related

to the product use (Schwartz, 2000), and overflow of information presented from the

product can distract users (Rozendaal et al., 2009).

Complexity has been studied extensively in operations management (OM) litera-

ture in various contexts and level of analysis (Jacobs and Swink, 2011). In this study,

we focus on complexity at the product-level which is relatively sparse. In order to

demonstrate the unique contributions of our study, we conducted an extensive re-
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view of this literature. A summary of prominent studies on product complexity is

presented in Table 2.2.

As is evident from Table 2.2, OM research on product complexity has primar-

ily focused on organizational and supply side challenges associated with managing

complexity (Jacobs and Swink, 2011; Gokpinar, Hopp, and Iravani, 2010; Kreye,

Roehrich, and Lewis, 2015). Managing product complexity is important as it can

have negative effects to a firm’s operational performance such as order/unit fill rates

(Closs, Nyaga, and Voss, 2010), supply chain performance (Kaski and Heikkila, 2002),

and product quality (Gokpinar, Hopp, and Iravani, 2010). Even OM practices de-

signed to reduce product complexity such as modular designs can be less effective

if the inherent product complexity is too high (Vickery et al., 2016). Although this

stream of literature provides important insights, it does not directly apply to our

context of freemium mobile apps because the convenience of SDKs makes operational

challenges in adding features less relevant. Further, even if the addition of features

increase the complexity of the product and the associated developmental challenges,

it is important to view features from a user perspective because they are the key in-

fluencers of user perception (Griffith, 1999) and product quality (Carpenter, Glazer,

and Nakamoto, 1994). These perceptions, in turn, affects the early stage user base

expansion, which determines network effects and user content generation capacities.

In this light, few service operations and marketing studies have considered market

response as a function of complexity. Complex services are known to require more

cognitive capacity from the customers which can lead to decreased customer satis-

faction and loyalty intentions (Mikolon et al., 2015). Marketing research shows that

quality evaluation is more difficult for complex products and therefore, suggests that

managers focus on building stronger brand images to reinforce indirect quality cues

(Hutton, 1997; Kim and Hyun, 2011). A particularly relevant study by Thompson,

Hamilton, and Rust, 2005 adapts the technology acceptance framework Venkatesh
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et al., 2003 and shows that the number of features of a product can impact both

the usefulness and ease of the use of the product. They find an inverted U-shape

impact of the number of features on the product’s performance which suggests that

consumers can feel fatigue from an excessive number of features. These studies fo-

cus on assessing a singular construct of product/service complexity which implicitly

assumes a homogenous effect on performance. While the findings provide theoretical

and managerial insights on how consumers form intentions regarding product features

and why it is important to build brand images and sales representative support, they

do not offer an actionable framework for producers to determine product feature de-

signs, especially for situations with heterogeneous feature choices with differential

impacts on end users.

Information Systems (IS) literature has also addressed product complexity in the

context of software development. Banker, Davis, and Sandra A Slaughter, 1998

state that complex software systems require more effort in maintenance and updates.

Therefore, the degree of complexity increases the required effort for making software

enhancements. J Alberto Espinosa et al., 2007 determine that the benefits of software

development task familiarity decrease as the structure of the software becomes more

complicated. These studies fall short in assessing software performance at the feature

level and do not examine the linkage between feature complexity and software market

success. Furthermore, IS research in the context of mobile apps has uncovered the

linkage between user ratings (Liu, Au, and Choi, 2014), portfolio strategies (Lee and

Raghu, 2014), and pricing (R. Garg and Telang, 2013; Ghose and Han, 2014) on

app performance. However, most of these studies focus on price-based competition

models and do not address the unique lifecycle characteristics to identify key success

factors for freemium apps. Currently, to the best of our knowledge, there are no

existing studies that explore the impact of feature complexity on the initial success

in the unique context of freemium apps. As argued earlier, initial success is critical
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to the longevity and profitability of freemium apps.

This study attempts to overcome these limitations and contribute to research

in this area by first analyzing demand-side market performance measures (such as

number of daily active users) to estimate the impact of an app’s feature complexity

for free mobile apps. Second, we conceptualize complexity as a multidimensional

construct and incorporate it as separate variables of interest. We collect proprietary

app information at the feature SDK level, which enables a deeper investigation of

complexity at the feature level. Finally, this is the first study of its kind to explore the

link between feature complexity and initial success in the unique context of freemium

apps.

2.2.2 Mobile app launch timing

When to launch the product into the market is an important operational decision that

affects the performance of a new product. The market size, growth rate, and market

need level at the time of product launch are essential factors in new product launch

success (Cooper and Kleinschmidt, 1987). To identify the optimal app launch timing,

anecdotal evidence has considered the effect of homogenous seasonal demand boost

on launch timings. Reports show that smartphones and tablets have higher usage

rates on weekdays and summer seasons compared to weekends and winter seasons

(Waber, 2014). Holidays can also be an important factor as many publishers increase

their ad spending during the holiday periods with eager users installing gaming apps

on their new devices received as holiday gifts (Liftoff, 2017). Industry reports also

confirm that in-app purchase conversion rates show a steady rise during the 12 weeks

following October as apps launched in the holiday season (November to January)

experience an average of 112% increase in downloads (Datta and Kajanan, 2013).

Therefore, assuming homogenous customer preference across all seasons does not

explain the heterogeneity in performance outcomes across apps launched in the same
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Table 2.2: Selective Literature on Product Complexity

Author Definition Dimensions Role Outcome

Vickery et al., 2016 Number of BOM components and
manufacturing processes

Single MOD New product
performance

Kreye, Roehrich, and Lewis, 2015 Number and intricacy of process
steps

Multi IV Buyer-supplier
relationship

Mikolon et al., 2015 Client perceptions on complexity Single IV Cognitive capacity
Closs, Nyaga, and Voss, 2010 Number of variants per component Single IV Order/Unit fill rate
Gokpinar, Hopp, and Iravani, 2010 Degree of network centrality Single IV Warranty claims
J Alberto Espinosa et al., 2007 Task size and structural complex-

ity
Multi MOD Team performance

Thompson, Hamilton, and Rust, 2005 Number of feature components Single IV Adoption intention
Sosa, Eppinger, and Rowles, 2004 Interdependence between product

development activities
Single IV Organizational

misalignment
Kaski and Heikkila, 2002 Number of physical modules and

interdependency
Multi IV Inventory value and

operating cost
Novak and Eppinger, 2001 Average of design novelty, number

of moving parts, active state
Single IV Vertical integration

Banker, Davis, and Sandra A Slaughter, 1998 Data density, decision density,
decision volatility

Multi IV Software enhancement
effort

Griffin, 1997 Number of product functions Single MOD NPD cycle time
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season. Building on this thought, we explore the potential of asymmetric impact of

seasonal demand boosts given the app’s feature composition.

Prior OM research considers a number of factors in order to determine the op-

timal launch time such as capacity constraints (T.-H. Ho, Savin, and Terwiesch,

2002), competition (Calantone et al., 2010), and trade-offs between production cost

and time-to-market (Savin and Terwiesch, 2005). While not much discussed in OM

literature, demand is known to have a significant impact on product introduction

performance. Axarloglou, 2003 showed that in the Electrical Machinery industry,

market aggregate demand fluctuations at different frequencies (i.e., seasonality, busi-

ness cycles) account for 35%-80% of the variability of new product introductions.

The Google search trend for keyword “best mobile games” is an indicator for market

interest in downloading new mobile game apps. From the plot shown in Figure 2.1,

we see strong demand seasonality tied to mobile device purchases. Based on this

observation, we consider market-level demand fluctuations as an important factor in

determining product launch times.

Figure 2.1: Google Search Trend for Keyword “Best Mobile Games”

Seasonality increases the potential market size which is generally considered pos-

itive, especially for products with extremely short lifecycles (Calantone et al., 2010;

Krider and Weinberg, 1998). Short lifecycle products like mobile apps may not sur-

vive beyond a single season; therefore, missed opportunities from a miscalculation

of product launch can be detrimental to the app’s performance. If the development
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process is completed during the off-season, then the developer faces a decision to

launch the product immediately or wait for the next peak season. Although not all

seasons are predictable, there may exist certain factors that create on-and-off seasons

for mobile apps such as holidays, government actions, industry traditions, weather,

social phenomena, summer and school years. Additionally, studies suggest that sea-

sonal customers, those who use extra available time on apps, drive seasonal demand

for mobile apps (Liftoff, 2017; Liss, 2017).

We also look into studies that examine the implications of seasonal demand. Closs,

Nyaga, and Voss, 2010 show that seasonal demand can exacerbate the problems in-

troduced by product complexity and capacity constraints, and further reduce service

level performance. However, demand seasonality is treated as a contextual factor,

which is beyond a firm’s control. We treat launch timing as a strategic lever to max-

imize app performance. A similar approach is used by Radas and Shugan, 1998 who

demonstrate the importance of the shape of the product lifecycle for timing strate-

gies under seasonal demand. They suggest that demand seasonality can be useful

in determining product launch timings. However, their study assumes homogeneous

consumer preferences across demand seasons and do not consider possible interac-

tions between demand seasonality and product characteristics. This study explores

whether the effect of seasonal demand-based launch timing strategies is universally

beneficial for all type of products.

In contrast to Radas and Shugan, 1998, our study argues that the benefits of

increased market activity due to seasonality effects may not be universal. Even for

products that are launched simultaneously during peak seasons, there is significant

heterogeneity in their performances. New customers added to the market due to sea-

sonality could have specific preferences which may not boost demand for all products.

The richness and diversity of app features could play a critical role in customers’ in-

tentions to consider a specific mobile app. Extant literature does not examine these
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interactions between mobile app features and market activity. We aim to address

this shortcoming by examining the interactions between product characteristics and

market activity. In this way, we attempt to develop a normative recommendation

framework for companies to determine the optimal timing strategy given their prod-

uct characteristics.

2.2.3 Research Hypotheses

Two dimensions of app feature complexity: Diversity and Richness

We argue that the impact of complexity on app market performance will materialize

through two mechanisms — potential user perceptions of app quality and word-of-

mouth publicity by users who have evaluated the app (Godes and Mayzlin, 2004).

According to the goods and services quality classification by Nelson, 1970, search

goods are products or services for which quality evaluation relies on attributes a

consumer can determine before purchasing the product, and experience goods are

products or services of which the quality evaluation rely on attributes that can only

be discerned after purchase or during consumption. Mobile apps fall within the

category of experience goods, where quality evaluation is relatively more difficult

before the purchase, and therefore, indirect signals of quality such as visual cues

and word-of-mouth are essential for user adoption. When a user is exposed to an

app download page, the app’s capability and feature sets can be inferred from the

app’s descriptions and posted screenshots. This allows the users to visually evaluate

the quality and fit of the app with the user’s usage purposes. Additionally, word

of mouth and valence from user-written reviews and social interactions can further

influence the app’s performance. User review comments and scores are one of the

critical information displayed for each app page to maximize its effectiveness. The

effects of word of mouth have proven to be useful in the motion picture industry where

studies have found that positive word of mouth increases attendance and ultimately,
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box office performance (Duan, Gu, and Whinston, 2008).

These mechanisms should result in opposing effects of feature richness and di-

versity on performance, with market performance benefiting from increased feature

richness while suffering from increased feature diversity. Specifically, we argue that

feature richness may have a significant positive impact on the app performance. Prior

research on flow (Csikszentmihalyi, 1990), cognitive absorption (Agarwal and Kara-

hanna, 2000), and immersion (Jennett et al., 2008) have shown that perceived use-

fulness and ease of use of games can induce a state of continuous use. If each feature

component has a non-negative, non-zero value, the addition of those features has a

positive impact on the final product’s perceived ease of use and usefulness (V. A. Zei-

thaml, 1988). Consumers perceive products with more features to be superior than

other competing products considered (C. L. Brown and Carpenter, 2000). More-

over, the choice set of added features allows the app to differentiate itself from other

competitors in the market (Nowlis and Simonson, 1996), and this occurs even when

an added feature fails to add a significant benefit to the user (Carpenter, Glazer,

and Nakamoto, 1994). Additionally, online user reviews play an important role for

consumers which substitute and complement other forms of offline communications

about the product quality (Chevalier and Mayzlin, 2006). Users that are content

from the rich set of features may post positive reviews and spread word of mouth

further increasing the user base. Therefore, we predict that feature richness will have

a positive impact on the launch success of the app due to improved user perceptions

about its capabilities, positive word of mouth and higher differentiation compared to

competing apps.

On the other hand, we argue that feature diversity may have a significant negative

impact on the app performance. Recent years have seen a proliferation of SDKs

(SafeDK, 2018), making it easier for developers to add features. Although adding

more features (via SDKs) to the product increases its market reach and, thus, makes
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the product generally appealing to the mass market, it also increases the integration

effort and leads to potential problems of crashes, viruses, malware, privacy breaches,

battery drain, and lags that can undermine users’ experience. For these reasons,

recent industry reports express concern about having too many SDKs embedded in

a single app (Shoavi, 2017). Moreover, every additional feature category requires

the user to learn and search for information to achieve their goal (Nielsen, 1994).

While learning new SDKs within a feature requires incremental effort that is built on

the prior use of other SDKs in the same feature, acquiring knowledge about a new

feature would require sizable additional effort in understanding the purpose of the

new feature and supporting SDKs. Chief developer of one of the most complex games

currently being sold “Magic the Gathering” points out that managing complexity âĂŞ

measured by word count on the playing decks in this game - from new features and

updates is one of the development team’s most significant struggles that limits the

entry of new players (Stoddard, 2017). Some experiments have shown that adding

more features can cause “feature fatigue,” which can be detrimental to users’ ease of

use of the product (Thompson, Hamilton, and Rust, 2005). Moreover, more features

can lead to more menus and navigation to finally reach the core function that the

user is looking for, which adds discomfort for the user. Specific feature categories

such as in-app advertisements can be too intrusive such that it hurts the flow of user

experience. This is likely to negatively influence the app‘s adoption via word of mouth

and visual inference. Furthermore, prior research has also shown that the ease-of-use

of the product can also impact the user’s intentions to provide online reviews (Picazo-

Vela et al., 2010). For these reasons, we hypothesize a negative relationship between

feature diversity and the app performance.

Hypothesis 1. As the feature richness of the app increases, the peak daily active

users of an app during early life-cycle stage increase.
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Hypothesis 2. As the feature diversity of the app increases, the peak daily active

users of an app during early life-cycle stage decrease.

Although we hypothesized opposing effects for feature richness and diversity, there

may also exist interactions between these two constructs. If the addition of a feature

in an app with a rich set of SDKs is such that the combined added value offsets the

learning cost exerted on the users, the result can be performance enhancing. Prior

studies on audience engagement in the context of education found that content variety

positively enhanced user engagement (Webster and H. Ho, 1997). Once the learning

cost is subsumed into the added value of the feature, the impact of increasing feature

diversity can appeal to a broader range of users. If this is the case, feature richness is

thought to have an enhancing effect on feature diversity. We test for the interaction

between feature diversity and richness by proposing H3.

Hypothesis 3. App feature richness positively moderates the impact of feature di-

versity on the peak daily active users of an app during the early lifecycle stage.

Market activity in mobile apps

Having increased user activity through seasonal inflow may have positive benefits for

the app. However, it is possible that features in the app may not universally appeal to

all customers during all seasons. For example, in the travel industry, demand is char-

acterized with high seasonality where customer segments are distinguishable between

business customers who seek services on a regular basis and leisure customers who

use services sporadically during certain times. Therefore standard revenue manage-

ment practice in the hotel, airline, and search aggregators involves price and quality

discrimination between customer segments (Talluri and Van Ryzin, 2006). This shift

in market segments also crosses over to related mobile apps such as Airbnb and Uber

where dynamic pricing is utilized to maximize revenues. In the movie industry, stud-

ies have found that DVD purchases are more affected by seasonal demands rather
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than DVD rentals, which shows support for the assertion that seasonal demand can

have asymmetric consumer preferences (Mukherjee and Kadiyali, 2011). Similarly, in

the mobile app market, in addition to the loyal, experienced users that download and

try out new apps on a regular basis, we can think of seasonal demand which adds

customers who intend to utilize the extra available time on these apps. Given that

these seasonal users enter the market for a short duration and have limited time to

complete the games they decide to download, we speculate that these customers will

be inclined towards mobile apps that are of high quality and challenging, but which

have a lower learning curve.

Feature richness improves the perceived quality of the mobile app, while also po-

tentially making the mobile game more challenging. Thus, increased feature richness

should result in heightened levels of positive word of mouth being shared. Consumers

that experience satisfaction and commitment from quality service, tend to share and

spread that experience through positive word of mouth (T. J. Brown et al., 2005).

Also, apps that provide an immersive experience can motivate the users to post posi-

tive reviews and comments on the app download page, on external user communities,

and on social network media. Hence, we argue that the effect of feature richness on

launch success will be further enhanced when there is a high level of market activity.

An increase in feature diversity indicates an increased number of feature cate-

gories. While learning new options within a feature requires incremental effort that

is built on the prior use of that features within a category, acquiring expertise in

a new feature category would require sizable additional effort in understanding the

purpose of the new category and supporting features. Seasonal users who prefer mo-

bile apps with a lower learning curve will likely download apps with lower feature

diversity. Hence, we argue that apps with lower feature diversity will benefit more

from seasonal increases in market activity. For these reasons, we formally state our

hypothesis as follows, and test to see how the cyclical trends identified using time
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series methods relates to the initial stage performance of an app. We present our

research framework along with all the hypotheses in Figure 2.2.

Hypothesis 4a. The positive effect of increasing feature richness on early stage peak

daily active users will be enhanced as market activity increases.

Hypothesis 4b. The positive effect of decreasing feature diversity on early stage peak

daily active users will be enhanced as market activity increases.

Figure 2.2: Conceptual Framework

2.3 Sample Construction and Data Description

In this section, we discuss the sample construction process of our data and describe

the variables included in the analysis.
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2.3.1 Sample Construction

We extract mobile app market data from the Application Programming Interface

(API) server of a leading app store intelligence company. The company maintains

a database on performance metrics, app characteristics, publisher characteristics of

iOS and Android apps worldwide. The detailed information regarding SDK is only

maintained for top 1,000 gross download apps which are updated daily. When an

app enters the ranking chart at a given date, its SDK information is added to the

database. At the time of data extraction, the company maintained a global (160

countries) daily panel database of approximately six million apps in the iOS and

Android market over 3.5 years starting from 2015 till 2018. For all apps, we extracted

general information such as file size, price, in-app purchase availability, release dates,

and image file URLs for both apps and publishers at time of launch. As for app

performance metrics, we collected daily/monthly active users, total revenue, and

the number of daily downloads. Moreover, for approximately one million iOS ranked

apps, we also collected version history and SDK installation dates. The extraction was

performed using a research university’s high-performance cluster computing server for

parallel processing of extraction and compilation.

In this study, we focus on the top 1,000 ranked apps in the U.S. iOS app store

because the iOS market provides a user experience on relatively homogeneous iPhone

devices. This eliminates concerns of unobserved user device characteristics from our

model estimations. The iOS platform also has extensive guidelines that SDKs must

conform to. This results in a highly integrated SDK environment that provides a more

homogenous experience to the users. Also, focusing on a single country allows us to

reduce country-level confounds and overcome language barriers in the data. From

the original three million apps, our target sample yielded daily panel observations of

1,782 mobile gaming apps in the U.S. over a period of 3.5 years. Finally, we identify

our time point of initial success for each app using the method described in Section
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, and convert it into cross-sectional data to conduct the analysis.

2.3.2 Variable Description

For each variable description, we include subscripts i to denote apps, j for app de-

velopers, c for the subcategory, t for initial success date, and l for app launch date.

The list of variables used in the model is also summarized in Table 2.3.

Dependent variable

The dependent variable lndaui,t is app i’s natural logged daily active users at the

time of initial success t. Daily active users are the number of users that open the

app at least once during a certain date. The total number of daily active users until

the point of initial success captures the magnitude of the app’s user base, which is

a reliable indicator for the app’s user base expansion performance at the early stage

of product launch. The time of initial success t is identified by calculating a short-

term three-day moving average and a relatively long-term ten-day moving average of

daily active users, and then finding the first cross-over points. The peak is defined

as the max daily active user level that occurs before the two moving averages cross-

over. We consider moving averages of the time series to reduce concerns of biased

peak identification due to random daily fluctuations in the data. An example of

identifying the initial peak using two moving average lines is shown in Figure 2.3.

Since the use of a ten-day-moving-average ignores crossovers that may occur within

the first ten days of the app, we check and confirm that there are no cases where

more than one crossover occurs within the first ten days since app launch. Therefore,

the first intersection of the two moving average lines properly isolates the first peak

and any subsequent peaks in the lndaui,t trajectory. To validate the local maxima,

we also took the first difference of the three-day moving average of lndaui,t and found

the point where the signs of the first difference changes from + to −. Both methods

32



Table 2.3: List of Variables Used in the Model

Variable Description

Dependent Variable
lndaui,t App i’s natural logged number of daily active users (i.e.,

users who opened the app at least once on a given date) at
the time of initial success t

Independent Variables
diversityi,t The total number of app i‘s installed SDKs feature cate-

gories at time of initial success l
richnessi,t The total number of app i‘s all installed SDKs at time of

initial success t
lnmktactc,l HP filter decomposed cyclical component of the natural

logged total number of app downloads for all the apps in
subcategory c at the app launch date l

lnmkttrc,l HP filter decomposed trend component of the natural logged
total number of app downloads for all the apps in subcate-
gory c at the app launch date l

competitionc,t Natural logged total number of apps launched in the store
for each app in subcategory c at the time of initial success t

pubexpj,l Cumulative number of apps developed and launched by the
publisher j at the time of launch t

screenshotsi,l App i‘s number of screenshots posted on the market app
page at the time of launch l

ageresi,l Four-classification age-restriction levels (1=“4+”, 2=“9+”,
3=“12+”, 4=“17+”) for app i at time of launch l

multicategoryi,l Number of subcategories that app i is enlisted at time of
launch l

sincelaunchi,t The number of days passed for app i to reach the initial
success at time t

updatesi,t Cumulative number of major and minor updates imple-
mented in app i until initial success time t

multiplatformi,l Indicator variable coded as 1 for app i that are launched in
multiple operating platforms at the time of launch l

appsizei,l The app i’s file size measured in bytes at the time of launch
l

Instrument Variable
avgrichc,l The average number of total installed SDKs in apps within

the same subcategory c at the time of launch l
avgdivc,l The average number of SDK categories in apps within the

same subcategory c at the time of launch l
moviesi,l The natural logged daily gross sales of top 10 box office

movies at the time of app launch l
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yielded 100% identical results. Also, to demonstrate the robustness of our results,

we consider alternative performance measures such as number of downloads and the

cumulative number of downloads at the initial success point.

Figure 2.3: Initial Peak Identification of “Cinderella Fall” by Disney

Independent variables of interest

For independent variables, richnessi,t is the total number of app i’s installed SDKs

at time of initial success t. As each SDK contributes to a feature in an app, the

total SDK count captures the intensity of the features embedded within an app. For

diversityi,t, we count the number of SDK categories within an app. The mobile

app market intelligence firm maintains a well-defined set of SDK categories which

includes development platforms, messaging tools, social sharing, advertising networks,

multimedia playback, user analytics, etc. SDKs that serve different categories are

considered more distant to SDKs that serve the same feature category. Therefore,

as more categories are incorporated in an app, higher degrees of heterogeneity result
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among the installed SDKs. This information on SDKs is collected by downloading and

reverse engineering all subject apps and analyzing their file structures. The variable

lnmktactc,l, and lnmkttrc,l are the cyclical and trend component of the natural logged

total number of app downloads for all the apps in subcategory c at the date an app

was launched l. Although the variable of interest is lnmktactc,l, lnmkttrc,l is also

introduced in the model to control for the increasing trend in mobile app downloads

over time. We use the Hodrick-Prescott (HP) high-pass filter to separate the cyclical

and trend components from the time series. The choice of the smoothing parameter

depends on the granularity of the time unit, and for daily time series, it is suggested

to set the smoothing parameter as λ = 1600× (365/4)4 (Ravn and Uhlig, 2002). We

then obtain the cyclical component by optimizing the following Equation 2.1.

minτt

[
T∑
t=1

(yt + τt)2 + λ
T−1∑
t=2
{(τt+1 − τt)− (τt − τt−1)}2

]
(2.1)

Where τt represents the trend component at time t which is subtracted from the

time series to obtain the cyclical component (Hodrick and Prescott, 1997). The

trends decomposed using the HP filter are illustrated in Figure 2.4. We can observe

demand surges surrounding Thanksgiving and post-holiday months such as January.

These trends coincide with anecdotal evidence (Liftoff, 2017), which indicates de-

mand seasonality in mobile games peaking around January and then decreasing until

December. This boost in demand is linked to the inflow of eager users exploring

and installing games for the first time on new devices they received as holiday gifts

(Liftoff, 2017).

Control variables

For control variables, competitionc,t is the natural logged total number of apps launch-

ed in a subcategory c at the time of initial success t. This controls for the increase

in market competition due to new apps being launched at peak seasons. Variable
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Figure 2.4: Trend and Cyclical Component of Market Activity (e.g., Arcade Category)

pubexpj,t is the cumulative number of apps developed and launched by the publisher

j at the time of launch t. This variable controls for publisher experience and brand

effects that may influence the initial performance of the app. screenshotsi,l is app

i’s number of screenshots posted on the market app page at the time of launch l.

Variable ageresi,l is the four classification age-restriction levels coded as 1 for “4+,”

2 for “9+,” 3 for “12+,” and 4 for “17+” for app i at time of launch l, which is treated

as a continuous variable in our analyses. Variable multicategoryi,l is the number of

subcategories that app i is enlisted at time of launch l. As the number of enlisted

subcategories increases, the app can get exposure to a broader user pool through

cross-genre listings. Variable sincelaunchi,t is the number of days passed for app i to

reach the initial success at time t. This variable is to control for the heterogeneous

download growth speed across apps. Variable updatesi,t is the cumulative number of
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major and minor updates implemented in app i until initial success time t. Variable

multiplatformi,l is an indicator variable coded as 1 for app i that is launched in

multiple operating platforms at the time of launch l to control for potential spillover

effects across app stores. We also control for the app’s file size measured in bytes

at the time of launch l using appsizei,l. Finally, we include subcategory fixed effects

to control for potential user behavior heterogeneity. Table 2.4 shows the summary

statistics and correlations of the key variables used in our model.

2.4 Econometric Model

We first acknowledge the endogeneity in SDK choice and launch timing decisions

made by app developers. We present the variable used to instrument app feature

complexity, and further complement the instrument by adding heteroscedasticity-

based instruments (Lewbel, 2012).

2.4.1 Endogenous SDK Selection and Launch Timing

Developers’ choice of installing specific SDKs and choosing the appropriate time to

launch the app may depend on unobserved characteristics such as firm resources,

market insights, and other development issues. If the abundance of firm resources is

realized through other performance-enhancing activities such as marketing and pro-

motion, which is omitted from our dataset and empirical model, our estimation for

the variables of interest, richnessi,l, diversityi,l, and lnmktactc,l can be significantly

biased (Wooldridge, 2010). To address this concern of endogeneity, we rely on in-

struments that explain the choice of SDKs and market activity at the time of launch

but is not correlated with the omitted factors. For endogenous SDK choice, we use

instruments avgrichc,l, and avgdivc,l which are defined as the average richness and di-

versity of installed SDKs in apps within the same subcategory c at the time of launch

l. The logic is similarly derived from previous works that identify instruments from
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Table 2.4: Descriptive Statistics and Correlation Matrix

Variable µ σ 1 2 3 4 5 6 7 8 9 10 11 12 13

1 lndau 6.33 2.85
2 diversity 4.97 2.48 -0.03
3 richness 9.99 6.83 0.06 0.83
4 lnmktact 0.26 0.65 0.04 0.00 0.01
5 lnmkttr 9.55 1.80 0.25 0.12 0.18 0.02
6 pubexp 4.46 6.96 -0.10 0.01 0.04 0.01 0.12
7 competition 3.69 0.95 0.02 0.06 0.13 0.19 0.67 0.32
8 screenshots 4.16 1.45 0.28 0.13 0.21 0.12 0.35 -0.03 0.10
9 ageres 1.84 1.00 -0.17 -0.16 -0.20 -0.05 -0.23 -0.12 -0.04 -0.25
10 multicategory 3.58 0.57 -0.12 -0.03 -0.01 -0.05 -0.15 -0.05 -0.11 -0.12 0.12
11 multiplatform 0.29 0.45 0.30 -0.07 -0.02 0.12 0.18 -0.07 0.00 0.23 -0.11 -0.04
12 appsize(mb) 146.54 202.1 0.24 -0.04 0.00 0.03 0.20 -0.03 0.07 0.17 0.00 -0.02 0.17
13 updates 0.08 0.43 0.20 -0.01 0.00 -0.04 0.07 -0.06 0.06 0.07 0.00 -0.06 0.10 0.10
14 sincelaunch 23.13 25.55 0.25 -0.08 0.03 0.00 0.15 -0.15 0.04 0.22 -0.04 -0.12 0.16 0.11 0.14

Note. Bold denotes significance at p<.05
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average characteristics of products supplied by other firms within the same market

(Berry, Levinsohn, and Pakes, 1995), or studies that use level of market power or

competitive pressure within the market (Berry and Jia, 2010). Nonetheless, mobile

app developers’ decision on including certain SDKs can be affected by competition

in the market because reverse engineering of downloaded apps and identification of

generic SDK components within them is relatively easy for software products.

To instrument market activity levels at the time of app launch, we use an instru-

ment of moviesi,l, which is defined as the natural logged gross sales of top 10 box

office movies at the time of launch l. Movies and mobile games are both experiential

goods that provide entertainment. The demand fluctuation in the movie industry

can be a proxy for the level of attention towards entertainment goods and availability

of time for potential mobile game users. This level of attention is also known to be

high around vacations and holiday seasons (Calantone et al., 2010), and therefore is

correlated to the market activity levels in mobile app stores. At the same time, the

performance of movies does not directly affect the performance of mobile applications,

which makes box office sales an ideal instrument for our situation.

Moreover, in subsequent models where richnessi,l, diversityi,l, and lnmktactc,l

interacts with exogenous variables, we additionally include the interactions between

our instruments and the exogenous moderator as instruments for both the endogenous

variable and the endogenous interaction term (Bun and Harrison, 2018). Because

we lack additional external instruments which make the model exactly identified,

we supplement the instrument with additionally generated instruments as simple

functions of the model’s data to improve the efficiency of the estimator and allow

over-identification tests for model assumptions.
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2.4.2 Heteroscedastic Covariance-Restricted IV Regression

We evaluate SDK implementation and product launch timing decisions on a software

product’s market performance at the app-unit level of analysis. For app i, subcategory

c, and publisher j at time of launch l, and time of initial success t, we formulate the

system of equations as follows.

lndaui,t = β0 + β1richnessi,l + β2diversityi,l + β3lnmktactc,l

+BΓ + αc + ε

(2.2)

richnessi,l = β10 + β11avgrichc,l + β12avgdivc,l + β13moviesi,l

+ Θ1Γ + Ω1Z + αc + τ1

(2.3)

diversityi,l = β20 + β21avgrichc,l + β22avgdivc,l + β23moviesi,l

+ Θ2Γ + Ω2Z + αc + τ2

(2.4)

lnmktactc,l = β30 + β31avgrichc,l + β32avgdivc,l + β33moviesi,l

+ Θ3Γ + Ω3Z + αc + τ3

(2.5)

Where, B is a vector of estimated coefficients for control covariates in the vector Γ

in Equation 2.2. Z is a vector of constructed instruments in addition to avgrichc,l,

avgdivc,l, and moviesi,l in Equation 2.3, 2.4, and 2.5. Θ and Ω are estimated coef-

ficients for control covariates Γ and constructed instruments Z. αc represents sub-

category fixed effects. Lewbel’s method relaxes the assumption that covariates in

vector X should be strictly exogenous and allows them to be correlated at higher

orders, such that cov (X, ε2) 6= 0. Then a set of instruments Z can be generated by

demeaning the existing covariates in vector X included in the model and multiplying

the residuals from the first-stage regression, τ as in the following Equation 2.6.

Z = (X − X̄) · τ (2.6)

Although the resulting generated instruments can be less reliable then externally

identified instruments, they can still capture the underlying common unobserved fac-
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tors, given that E [Xε] = 0, E [Xτ ] = 0, and cov (Z, ετ) = 0. Moreover, the strength

of the instrument is proportional to cov (Z, τ), which corresponds to the degree of

heteroscedasticity of τ with respect to Z (Lewbel, 2012). Therefore, to ensure the

strength of our generated regressors, we perform the Pagan-Hall test (Pagan and

Hall, 1983) and confirm significant heterogeneity in our data (146.356, p < 0.01). For

interactions terms involving the endogenous variable, we include interactions between

the endogenous variable with exogenous variables and include additional instruments

to the model. All models are estimated with robust standard errors clustered at the

publisher level.

We implement a two-step GMM estimator instead of the two-stage OLS estimator

which is known to be more efficient in the presence of heteroscedasticity (Wooldridge,

2010). Under-identification test using the Kleibergen-Paap rk LM statistic shows that

our models are adequately identified (p < 0.05) (Kleibergen and Paap, 2006). The

Kleibergen-Paap rk Wald F statistic are all above the Stock-Yogo weak identification

test critical values of 10% maximal relative bias and size (Stock and Yogo, 2005),

which supports the strength of our instruments. We test the over identifying re-

strictions (the unobserved error process and our instruments are orthogonal), using

the Hansen J statistic (Hansen, 1982). We do not find significant correlation across

all models (p > 0.05). Overall, the test results jointly support the validity of our

instruments.

2.5 Empirical Results

In this section, we present our results from estimating the instrumental variable

regression model and demonstrate robustness to several alternative specifications.
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(a) Richness×Diversity (b) Richness×Market Activity

(c) Diversity×Market Activity (d) Richness×Experience

(e) Diversity×Experience

Figure 2.5: Interaction Plots

2.5.1 Estimation Results

The results of the estimates are shown in Table 2.5. The first column shows results

without any control variables. With the added set of control covariates in Model (2),

the results of our focal independent variables estimates are qualitatively consistent.

We also present the interaction plots in Figure 2.5.

In Model (2), the first order term estimates of our focal independent variables,

feature richness and diversity are presented. We find that as the number of SDKs

implemented in the app increases by one unit, the number of daily active users at the
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Table 2.5: Main IV Regression Results

(1) (2) (3) (4) (5)

richnessi,l 0.022 0.068∗∗∗ −0.083∗∗∗ 0.119∗∗∗ 0.116∗∗∗
(0.069) (0.025) (0.032) (0.022) (0.021)

diversityi,l −0.206 −0.231∗∗∗ −0.404∗∗∗ −0.352∗∗∗ −0.348∗∗∗
(0.183) (0.081) (0.071) (0.068) (0.059)

lnmktactc,l −0.653 ∗ ∗ 0.422∗∗∗ 0.364∗∗∗ 0.544∗∗∗ 0.680∗∗∗
(0.304) (0.119) (0.110) (0.133) (0.194)

lnmkttrendc,l 0.457∗∗∗ 0.509∗∗∗ 0.441∗∗∗ 0.294 ∗ ∗ 0.318 ∗ ∗
(0.065) (0.161) (0.144) (0.135) (0.151)

pubexpj,l −0.011 −0.004 −0.007 −0.008
(0.008) (0.007) (0.007) (0.007)

competitionc,t −0.863∗∗∗ −0.756∗∗∗ −0.681∗∗∗ −0.698∗∗∗
(0.172) (0.155) (0.144) (0.162)

screenshotsi,l 0.242∗∗∗ 0.246∗∗∗ 0.185∗∗∗ 0.172∗∗∗
(0.048) (0.048) (0.044) (0.045)

ageresi,l −0.183 ∗ ∗ −0.232∗∗∗ −0.155 ∗ ∗ −0.185 ∗ ∗
(0.088) (0.082) (0.079) (0.083)

multicategoryi,l −0.166 −0.135 −0.268 ∗ ∗ −0.264 ∗ ∗
(0.136) (0.123) (0.119) (0.120)

multiplatformi,l 1.022∗∗∗ 1.028∗∗∗ 0.944∗∗∗ 0.927∗∗∗
(0.173) (0.153) (0.162) (0.159)

appsizei,l 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.000) (0.000) (0.000) (0.000)

updatesi,t 1.072∗∗∗ 1.040∗∗∗ 1.080∗∗∗ 1.027∗∗∗
(0.125) (0.113) (0.126) (0.124)

sincelaunchi,t 0.012∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.013∗∗∗
(0.002) (0.002) (0.002) (0.002)

richnessi,l × diversityi,l 0.023∗∗∗
(0.003)

lnmkactc,l × richnessi,l −0.035∗∗∗
(0.010)

lnmkactc,l × diversityi,l −0.082∗∗∗
(0.032)

Constant 3.046∗∗∗ 4.418∗∗∗ 5.602∗∗∗ 6.832∗∗∗ 6.677∗∗∗
(0.663) (1.384) (1.247) (1.206) (1.255)

Subcategory FE NO YES YES YES YES
Observations 1,782 1,782 1,782 1,782 1,782
R-squared 0.032 0.277 0.285 0.275 0.275
Number of Publishers 711 711 711 711 711

Robust standard errors clustered by publisher in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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initial peak increases by 6.8% on average (0.068, p < 0.01). On the other hand, a one

unit increase in SDK categories in the app leads to an 23.1% decrease in the number

of daily active users at the initial peak (−0.231, p < 0.01). These results provide

support to our hypotheses H1 and H2. Although not hypothesized, the impact of

launching the app when market activity is 1% higher is associated with a 42.2%

increase in number of daily active users at the initial peak (0.422, p < 0.01). This

emphasizes the importance of a well-timed launch of mobile applications.

Next, we introduce interactions into the model to estimate the interaction effects

between the focal independent variables. As shown in Model (3), we find a significant

positive interaction between feature richness and diversity (0.023, p < 0.01). The

marginal effect of richness conditional on levels of diversity as shown in Figure 2.5(a)

suggests that the negative effect of high diversity is mitigated when there are high

levels of feature richness. This confirms the enhancing effect such that the learning

cost can be mitigated by added value from SDK components. Thus, our hypotheses

H3 is supported.

For richness and market activity interactions, we find a significant negative in-

teraction as shown in Model (4) (−0.035, p < 0.01). Interestingly, this result is in

the opposite direction from our hypothesis H4a. The significant negative interaction

suggests that seasonal customers do not reward feature richness of apps. As shown

in Figure 2.5(b), only apps with relatively lower feature richness are able to enjoy a

significant increase in early-stage user base. Between diversity and market activity,

we find a significant negative interaction as shown in Model (5) (−0.082, p < 0.01).

The interaction plot, as shown in Figure 2.5(c), suggests a slight performance boost

of low feature diversity apps when launched during peak seasons, and a performance

loss for high feature diversity apps when launched during peak seasons. Again, results

show that seasonal users do not prefer high feature diversity apps. This supports our

hypothesis H4b.
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For control variables, we find a significant positive effect of number of screenshots

(0.242, p < 0.01), multiplatform (1.022, p < 0.01), app size (0.002, p < 0.01), and

number of previous updates (1.072, p < 0.01). The estimated effects are qualitatively

consistent regarding direction and strength as reported in the prior literature (Ghose

and Han, 2014), and competition shows negative directionality (−0.863, p < 0.01),

which is consistent with our expectations.

2.5.2 Post-hoc Analysis

From our main analysis, we find a consistently negative impact of SDK diversity.

Therefore, a natural question arises, “How do firms overcome the negative impact of

feature diversity?” “What is driving the negative feature diversity effect?” To answer

this question, we conduct two post-hoc analyses. First, we tap into the literature on

organizational learning as applied in the context of software development (Fong Boh,

Sandra A. Slaughter, and J. Alberto Espinosa, 2007; Narayanan, Balasubramanian,

and Swaminathan, 2009). Because the decision of choosing the optimal set of SDKs

can be a complex problem, it is possible that firms get better through repetition and

experience accumulation. Therefore, we interact the publisher prior development

experience and feature diversity to see whether firms can turn the diversity impact

into a positive one through refined decision making.

Using the identical IV regression specification, we incorporate two interactions,

feature diversity and experience, and feature richness and experience. The estimation

results are presented in Table 2.6.

We find that experience positively moderates both feature richness (Model (6):

0.006, p < 0.01) and feature diversity (Model (7): 0.014, p < 0.01). Plots of these

interactions are shown in Figure 5d and 5e. Feature diversity shows a negative impact

at low levels of publisher experience. As publishers gain experience from prior app

launches, this negative impact of diversity is mitigated. Moreover, publishers that
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Table 2.6: Post-Hoc IV Regression Results

(6) (7) (8)

richnessi,l 0.053 ∗ ∗ 0.079 ∗ ∗∗ 0.090 ∗ ∗∗
(0.022) (0.017) (0.023)

diversityi,l −0.282 ∗ ∗∗ −0.328 ∗ ∗∗
(0.059) (0.051)

lnmktactc,l 0.436 ∗ ∗∗ 0.440 ∗ ∗∗ 0.458 ∗ ∗∗
(0.104) (0.108) (0.110)

lnmkttrendc,l 0.544 ∗ ∗∗ 0.540 ∗ ∗∗ 0.567 ∗ ∗∗
(0.147) (0.149) (0.154)

pubexpj,l −0.050 ∗ ∗∗ −0.062 ∗ ∗∗ −0.006
(0.009) (0.012) (0.007)

competitionc,t −0.926 ∗ ∗∗ −0.925 ∗ ∗∗ −0.931 ∗ ∗∗
(0.162) (0.163) (0.163)

screenshotsi,l 0.193 ∗ ∗∗ 0.205 ∗ ∗∗ 0.234 ∗ ∗∗
(0.044) (0.043) (0.045)

ageresi,l −0.191 ∗ ∗ −0.171 ∗ ∗ −0.153∗
(0.078) (0.076) (0.082)

multicategoryi,l −0.189 −0.225∗ −0.337 ∗ ∗∗
(0.120) (0.118) (0.121)

multiplatformi,l 0.963 ∗ ∗∗ 0.915 ∗ ∗∗ 0.889 ∗ ∗∗
(0.157) (0.156) (0.165)

appsizei,l 0.002 ∗ ∗∗ 0.002 ∗ ∗∗ 0.002 ∗ ∗∗
(0.000) (0.000) (0.000)

updatesi,t 1.163 ∗ ∗∗ 1.157 ∗ ∗∗ 1.099 ∗ ∗∗
(0.117) (0.120) (0.120)

sincelaunchi,t 0.012 ∗ ∗∗ 0.012 ∗ ∗∗ 0.012 ∗ ∗∗
(0.002) (0.002) (0.002)

pubexpj,l × richnessj,l 0.006 ∗ ∗∗
(0.001)

pubexpj,l × diversityj,l 0.014 ∗ ∗∗
(0.003)

devfeati,l −0.172
(0.110)

monetizationi,l −0.357 ∗ ∗∗
(0.088)

Constant 4.878 ∗ ∗∗ 5.099 ∗ ∗∗ 4.834 ∗ ∗∗
(1.221) (1.226) (1.304)

Subcategory FE YES YES YES
Observations 1,782 1,782 1,782
R-squared 0.282 0.284 0.276
Number of Publishers 711 711 711

Robust standard errors clustered by publisher in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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launch low diversity apps even after accumulating prior experience may see decreased

performance. On the other hand, highly experienced firms see stronger benefits from

launching feature-rich apps. Again, if a firm with experience launches a low richness

app, the app may yield lower performance levels.

Next, in order to answer the second question, we divided the feature diversity

variable into two sub diversity variables of development feature diversity and mone-

tization feature diversity. Development features are groups of SDKs essential for app

development such as development tools, crash reporting, data hubs, and testing. On

the other hand, monetization features are SDK groups that enable the developer to

build revenue streams by gaining an in-depth understanding of user behavior, send-

ing targeted promotions, providing convenient in-app purchase methods, and embed

in-app advertisements. We re-estimate the IV regression with the separated feature

diversity variables to see whether the negative impact of diversity pertains to mone-

tization features.

Estimation results for the second posthoc test are shown in Table 2.6. We find a

significant negative effect of monetization features (−0.357, p < 0.01) and insignificant

effect of development tool features (−0.172, p > 0.10). These results suggest that

the negative impact of feature diversity mostly comes from monetization features

embedded in the app. Monetization features such as in-app advertisements are known

to be very intrusive and hinder the immersion of the user. Additional permissions and

data requirements from user data mining features may increase the data traffic and

lag the app performance. However, these features are necessary for the developer to

generate revenue streams. We confirm a trade-off relationship between user experience

and developer monetization. It is important for the developer to know the severity

of this trade-off and carefully balance both-sides to achieve sustainable service.
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2.5.3 Robustness Checks

We demonstrate the robustness of our results by performing the analyses based on 1)

alternative dependent variables, 2) alternative independent variables, 3) alternative

estimation procedures, and 4) alternative samples.

For alternative dependent variables, we considered the logged number of down-

loads at the time of peak downloads and logged number of cumulative downloads at

the time of peak. We find qualitatively consistent results from both alternative depen-

dent variables. Next, we use alternative operationalizations for our focal independent

variables of market activity and feature richness. Instead of the HP filter, we use the

Christiano-Fitzgerald filter to calculate the cyclicality in market demand (Christiano

and Fitzgerald, 2003). Instead of the total number of SDKs for the feature richness

variable, we use the maximum number of SDKs across the SDK feature categories to

measure feature richness. For both alternative operationalizations, the results were

consistent with our main model results. For alternative estimation procedures, we

formulate an OLS regression which does not account for the endogeneity. Finally, for

alternative samples, we first account for apps that are launched by high profile pub-

lishers and second, account for apps that are developed with holiday-specific themes.

We discard the top 5% apps regarding number of downloads and re-estimate our

models to see whether our results were influenced by so-called “blockbuster” apps.

For holiday specific apps, we identify 20 apps that contain any holiday-related terms

(e.g., Christmas, Santa, Halloween, Easter, Xmas, New Year) in their titles, and

dropped them from our sample. We present the results of our robustness checks in

Appendix A. The reported results are qualitatively consistent with our main model

results. These results collectively show support for the robustness of our results.
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2.6 Discussion and Conclusions

2.6.1 Implications for Theory

Our investigation makes significant theoretical contributions to research streams in

product complexity and market seasonality. First, we delineate the effect of complex

product feature designs from a downstream user perspective. Rather than focusing

on how complexity imposes product development challenges, we assessed whether the

choice of adding more layers of complexity to the product is rewarded by the users.

Even if complexity adds challenges to the development process, it can be inevitable

if users prefer richer and more diverse experience. To do this, we adopt a demand-

side performance metric of initial peak magnitude in daily active users, number of

downloads, and cumulative downloads. This demand-side assessment is especially

important because freemium mobile apps largely rely on network effects and user

content generation. We find that feature set composition significantly influences the

early stage user base expansion of an app.

Second, we identify product feature richness and diversity as a critical non-price

competition factor in the context of mobile applications. While price is often a

critical product and market indicator that drives economic theories, factors that are

identified in this study provide valuable insight for explaining performance outcome

of product systems when they are competing on non-price factors. Optimizing the

feature set is especially important in our context as the extremely short product life

cycle does not allow firms to experiment and study market reactions after the product

is launched. Therefore, we contribute to the research stream in mobile apps by

assessing mobile app performance at the feature-level, which becomes more relevant

as freemium emerges as the dominant business model.

Third, we find asymmetric effects of the different dimensions of complexity, which

helps us establish the conceptual differences between the dimensions. Prior literature
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on the demand side assessment of product complexity (Kim and Hyun, 2011; Mikolon

et al., 2015; Thompson, Hamilton, and Rust, 2005) mostly view complexity as a

unidimensional construct or hypothesize a unified direction of multiple dimensions of

complexity, failing to delineate the differences between each complexity dimension.

We conceptualize the two complexity dimensions as feature richness and diversity and

estimate their relative impact on the apps’ performance. Findings from this study

support a positive effect of complexity when components cohesively contribute to a

certain feature, thereby adding richness. On the other hand, when components are

scattered across a variety of feature categories, the complexity negatively affects the

app’s performance.

Fourth, we show how feature complexity of a product interacts with market sea-

sonality. Specifically, we find that apps with less feature richness and diversity benefit

more from a peak season launch. This finding helps us explain the heterogeneous per-

formance outcomes of mobile apps competing during peak demand seasons. Research

in economics that examines business cycles and marketing literature that examines

demand seasonality have endorsed the idea of optimizing market entry timing strate-

gies based on demand patterns. In contrast to the naÃŕve belief that more market

potential is always good, we argue that it is important to examine the demand sea-

sonality and product feature interactions. In contrast to our initial reasoning that the

effect of feature richness and diversity would be more salient to the seasonal users,

we find that the complexity of features reduces the attractiveness of the app to the

seasonal customers. The additional inflow of users during peak seasons represent a

type of users that are somewhat constrained by resources or attention spans such

that product adoption occurs mostly during a specific time of year. Therefore, sea-

sonality in demand itself can occur for a specific type of consumer segment which

requires the app to be exceptionally easy to understand and use. These users do not

reward the developers for richer and more diverse features. The negativity in learning
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cost resulting from feature complexity dominates in these user segments, and sim-

pler apps benefit from the seasonality based-timing. This study provides insight into

an Operations-Marketing interface issue by demonstrating a significant interaction

between market demand patterns and product features.

Finally, through two post-hoc analyses, we dive deeper into the underlying mech-

anisms of the negative impact of feature diversity. We show that app developers

accumulate knowledge from prior launch experience such that they can make better

decisions on SDK selection and optimize the benefits. Interestingly, by observing

the interaction plots, we find that the market penalizes firms with reputation and

experience if they launch low richness and low diversity apps. An explanation for

this finding is that the experience variable is also capturing the firm reputation in

the market. Results show that as a firm grows their reputation, possibly users in the

market may expect more diverse experience and richer features in the newly launched

apps. A firm that does not innovate and still maintains the low richness and low di-

versity may eventually suffer from reduced performance. In sum, the results suggest

two things. First, publishers indeed learn over time from prior development and

launch experiences and make better decisions regarding SDK implementations. From

a broader picture, this shows that while managing complexity is a challenge for pub-

lishers, they improve their decision-making regarding product complexity from prior

experience and excel over time. Second, there is a market pull for constant tech-

nology adoption and innovation regarding app features such that a firm that does

not offer novel features in their newly launched apps may quickly lose its place in

the market. We also find that the negative impact of feature diversity mostly comes

from monetization features. This shows that there is a trade-off relationship between

user experience and publisher revenue sources. Carefully balancing the two opposing

forces poses difficult challenges for developers in this business.
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2.6.2 Implications for Practice

Practitioners can benefit from the findings of this study in a number of ways. First,

we have addressed a critical managerial decision in the context of mobile app de-

velopment with regard to SDK choice. Now that the number of SDKs available in

the market is growing exponentially, picking and choosing the right SDKs and the

resulting feature set is becoming an essential problem for app developers. Our find-

ings suggest that it is crucial to consider SDK choice from a perspective of adding

more richness or diversity to the app’s features. It is vital for managers to know

that a diverse feature set that lacks richness can backfire and lead to reduced perfor-

mance. Second, the significant interaction between market activity, feature richness

and feature diversity suggest that managers should be careful in assuming that the

market segment is homogenous between the peak and off-peak season. If there is a

cost to postponing product launch after development completion to potentially take

advantage of launching in the peak-season, this wait may not be justified, especially

if the app is complex. On the other hand, apps with relatively simpler features

and a straightforward value proposition can benefit more from a well-timed product

launch. Fourth, the results suggest that publishers should be cautious in expanding

the feature diversity of apps. It is advisable that the feature expansion takes place

after accumulating several product launch experiences. Prior product launch and

managing experience allows the developer to accumulate knowledge about the user

preference and behaviors, which can be valuable in optimizing new feature category

experience. Finally, developers should be aware of the trade-off relationships between

adding features that enhance user experience versus those focused on monetization.

Although these features may be tempting, a careful balance between the two will be

essential for sustaining a healthy app service.
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2.6.3 Limitations and Conclusions

Our first limitation is that the scope of the study pertains to iOS gaming apps only.

This reduction in scope allowed us to reduce concerns related to unobserved influences

from mobile device characteristics and user demographics. However, we believe that

the gaming context is an extreme case regarding competition intensity and short

innovation cycles, which the mobile app economy generally shares in differing degrees.

Therefore, our findings on complexity and market activity should apply to other app

categories as well that use modularized software development kits. Second, we do

not have a more detailed performance measure that captures the actual usage of the

app. The actual duration of use would be ideal to capture user engagement with the

mobile app. Future research can look into user-level behavior data to strengthen the

link between app features and performance outcomes.

Overall, this study sheds light on both theory and practice on the emerging trend

in mobile app ecosystems. Our conceptualization focusing on the differences of mobile

app lifecycles opens novel research avenues yet to be explored. Asymmetric effects of

the feature complexity dimensions and their interactions with demand patterns are

the primary findings of this study.
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Chapter 3

Software Maintenance Strategies for Free

Mobile Applications

Abstract

Nowadays, mobile apps are converging towards the freemium business model which

shows extremely short lifecycles with almost instantaneous demand saturation. To

retain and acquire new users after an app is launched, app developers releases en-

hancement updates. Enhancement updates exert substantial investment from the

developers. Therefore, it is important to understand the impact of these enhance-

ments, and identify contextual factors that further reinforce the effectiveness of these

efforts. In contrast to prior software maintenance literature that focuses on opti-

mizing the cost and efforts of software maintenance, we focus on the proactive use

of enhancement efforts to effectively stimulate demand and increase the longevity

of the mobile app. Specifically, through a difference-in-differences estimation with

Bass model predictions as the base case, we estimate the average treatment effect of

releasing enhancement updates in an app. Moreover, we explore contextual factors

such as update schedule regularity, lifecycle stages, and market activity levels at the

time of update to explain why certain enhancement updates can be more effective

than others even within a single app. The dataset is extracted from a proprietary

application programming interface (API) which contains daily app performance and

file structure information of 433 free iOS gaming apps with 4,052 updates in the U.S.

over 3.5 years. We classify enhancement updates using tf-idf naive Bayes text clas-
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sifiers. Findings confirm significant positive effects of enhancement updates on the

app download performance. Further, keeping a regular schedule, releasing updates

right after the initial peak in adoptions, and high market activity levels have positive

moderation effects on the enhancement update effect. Post-hoc analyses using semi-

parametric and parametric survival analyses reveal that our findings are consistent in

extending the app lifecycle. Our study provides both academic as well as managerial

insights on how enhancement updates should be released when the firm is concerned

with proactively stimulating mobile app adoption.

Keywords: Mobile apps, software maintenance, schedule regularity, app lifecycle, mar-

ket activity

3.1 Introduction

Software maintenance refers to the modification of software after implementation

to correct errors, to improve performance, or to adapt to a changed environment

(E Burton Swanson, 1976). Software maintenance is long recognized by researchers

as a costly, but a crucial process that entails around 50-80% of a firm’s IT budget

(Nosek and Palvia, 1990). For this reason, research has predominantly focused on

understanding determinants of maintenance efforts (Banker and Sandra A Slaughter,

1997; Banker, Davis, and Sandra A Slaughter, 1998) or minimize cost (M. S. Krishnan,

Mukhopadhyay, and Kriebel, 2004; Arora, Caulkins, and Telang, 2006; Kulkarni et

al., 2009; Ji et al., 2011). Such software maintenance efforts are equally important

for mobile applications where the cost of software maintenance generally amounts up

to 20% of the entire app development cost (Moore, 2019).

Software maintenance is commonly characterized as a group of three activities.

These activities are corrective maintenance (performed in response to the occur-

rence of system failures), adaptive maintenance (performed in anticipation of changes

within the data or processing environment), and perfective maintenance (performed
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to eliminate inefficiencies and enhance performance) (Lientz, E. Burton Swanson,

and Tompkins, 1978; E Burton Swanson, 1976). As commonly done in practice and

research, we bundle perfective and adaptive maintenance under the term enhance-

ment updates (Ji et al., 2011). Additionally, organizations need to perform corrective

maintenance throughout the system lifetime. We refer to corrective maintenance

as simply maintenance updates. Dealing with maintenance activities with clear re-

quirements, user requests, and cost estimates, in other words, the reactive software

maintenance can be optimized through various batching and resource allocation poli-

cies. However, much less is known about the decision process of organizing software

maintenance proactively (i.e., using enhancement activities to acquire new users and

increase revenue).

By focusing on the mobile gaming industry context, this research explores the

effects of one type of software maintenance effort, enhancement activities. The mobile

gaming category is characterized by the highest competition intensity and revenue

generation capability among all app categories. Developers in this category need to

release new contents to constantly maintain user engagement. New content updates

can lead to significant increases in revenue and lifetime of the app. For example, one

of the most successful apps in the gaming category, Clash of Clans, has accumulated

97 updates since its launch in 2012. The company rolled out an update every three

weeks on average, primarily to increase user engagement through new content roll

outs and bug fixes. With higher engagement of its user base, this app generates

over $1.5 million per day. Finally, because the gaming app average lifetime is the

shortest among all app categories (Gordon, 2018), we can observe the entire lifetime

of a sizable number of apps even within our study period. Therefore, mobile games

provides a nice empirical setting to study the factors that determine the effectiveness

of enhancement updates. Through this study, we attempt to answer the following

research question: Why are some enhancement updates more effective than others?
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How should mobile app developers schedule their enhancement updates? Our focus is

on estimating the effect of introducing an enhancement update in a mobile app and

further exploring multiple factors that can further reinforce this update effect.

The type of software maintenance updates and its rollout timing is a critical deci-

sion for mobile app developers, not only because they are expensive, but also because

they can be effective in bringing in new users and retaining current users. Over time,

the dominant business model for mobile apps, is gravitating towards the freemium

business model where the revenue streams are generated from in-app purchases and

advertisements (Taube, 2013). These revenue streams accrue slowly over time, and

increase proportionately with the user base size. Therefore, the developer needs to

quickly accumulate the user base size and retain that user base to break-even. Fail-

ing to address issues in the system effectively, or failing to provide more content

promptly, may deter users away from the app quickly due to their short attention

spans (Brauer, 2014). Especially, enhancement updates in mobile apps are often tied

to various advertising activities (Norton and Bass, 1987), which play a vital role in

increasing the user base in later stages of the app’s life cycle.

We collect unique data from a proprietary application programming interface

server of a leading app store intelligence firm. The database maintains daily obser-

vations of the app, publisher characteristics, market performance metrics, and most

of all, version history, update date, and update log texts in separate endpoints. Our

observation window ranges from January 2015 to December 2017. We deploy text

frequency-inverse document frequency (tf-idf) text analysis with naive Bayes classifier

on the update logs using supervised machine learning to classify the update types.

Then, we estimate a difference-in-differences analysis using predictions of each app

download time series from a Bass diffusion model (Bass, 1969) as the control group.

Similar to an event study method, we restrict our sample to ±2 days around the en-

hancement activity to reduce concerns from unobserved confounds. Our final sample
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consists of 433 apps with 4,052 updates. In addition to estimating the enhancement

activity effects, we estimate the effect of deviations from keeping a regular update

schedule, updates made during certain life cycle stages, and updates made during

varying market activity levels. Regular update schedule is operationalized as a rolling

standard deviation metric of inter-update times. We define three life cycle stages of

an app. Stage one is from launch date to date of initial peak in daily downloads, stage

two is from date of initial peak in daily downloads to date when the daily downloads

decrease to 50% of the initial peak, and stage three is from date of 50% of the initial

peak to the date of app service termination. Market activity is operationalized as

the aggregate total daily downloads in a mobile game subcategory, which consists of

mobile game genres. For robustness checks, we deploy semi-parametric and paramet-

ric survival analysis models and alternative variable specifications to demonstrate the

robustness of our findings.

We find that software enhancement activities are associated with a 5.23% increase

in daily downloads in a two-day after treatment window. Further, a 1% increase in

inter-update time variability leads to a 2% decrease in this content update effect.

Regarding life cycle stages, we find that enhancement efforts made in the stage right

after the initial peak in daily downloads are associated with a 44.7% increase in

daily downloads compared to enhancements made before the initial peak. Finally,

we find that releasing enhancement updates when the market activity level is 1%

higher, the enhancement update effect increases by 9.77%. In a post-hoc analysis, we

find that certain weekdays such as Thursdays and Fridays are preferable in releasing

enhancement updates.

Our study makes significant theoretical contributions to software maintenance

literature. First, recent analytical models attempt to jointly consider demand and

supply side constraints to optimize software maintenance schedules, product launch

times, and termination decisions. The lack of empirical evidence forces these models
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to rely on simplistic assumptions about the demand change arising due to updates.

This study provides the crucial inputs regarding the demand and additional param-

eters to consider when building such optimization models. Second, we argue that

traditional software maintenance frameworks do not thoroughly explain the effects

of enhancement updates. Therefore, in contrast with prior research that mainly con-

siders supply-side cost implications of software maintenance, we propose a proactive

view of software maintenance that aims to maximize the benefits of enhancement

updates. Third, we contribute to literature on mobile apps by understanding the

effects of software maintenance activities in the context of mobile apps, which is an

essential piece currently missing in the literature.

Our study has significant managerial implications for mobile app developers.

Through a quasi-experimental analysis, we obtain estimates of enhancement updates

with minimum bias. By exploring additional parameters as moderators for this en-

hancement update effect, we propose three types of updating strategies that can

further increase the benefit of these updates. We find schedule regularity to have

relatively small moderation effects on enhancements. However, due to its known

benefits from traditional software maintenance frameworks that aim at minimizing

costs, many app developers adopt this updating policy. On the other hand, we find

lifecycle-based enhancement and market activity-based enhancement to be viable al-

ternative strategies. We find that even if the pursuit of these strategies accompanies

disruptions to a regular update schedule, their moderation effects are significant in

magnitude, and therefore should be considered by app developers when developing

their update schedules.

The rest of the chapter is organized as follows. In the next section, we present a

survey of the literature in this area. In section 3.3, we describe the sample construc-

tion process and data used for this study. In section 3.4, we develop the econometric

model to estimate the effects of interest related to enhancement updates and timing
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decisions that affect the updates. In section 3.5, we present the estimation results

followed by a post-hoc analysis, which further explores micro timing strategies re-

lated to the weekday of the update. We also discuss the results of robustness checks.

Finally, in section 3.6, we discuss the implications of our findings and point to future

work avenues.

3.2 Literature Review

In what follows, we examine the role of software maintenance in mobile apps and

discuss how variability in update schedules can moderate the effectiveness of software

maintenance efforts.

3.2.1 Software Maintenance in Mobile Apps

Software maintenance is a critical task for a mobile app in increasing revenue and

extending the life cycle. Software maintenance activities take up a large portion of

the software developers’ resources and is even considered more important than the

initial development of a software (Lientz, E. Burton Swanson, and Tompkins, 1978).

For large information systems (IS), the maintenance cost is estimated as high as

50-80% of the total IS budget (Nosek and Palvia, 1990). For smaller scale mobile

applications, still the portion of maintenance is known to amount up to at least 20%

of the app development budget (Moore, 2019). From a user’s perspective, a well-

executed update can increase the value of the app significantly, leading to higher

satisfaction. While there is a strong need, managing software maintenance activities

effectively are known to be difficult.

The literature on software maintenance provides various classifications to soft-

ware maintenance activities. Earlier work in this area categorizes maintenance ac-

tivities into three categories, namely adaptive maintenance, perfective maintenance,

and corrective maintenance. Adaptive maintenance refers to changes in the software
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to cope with environmental changes. Perfective maintenance refers to implementa-

tions of new or changed user requirements which enhances the functionality of the

software. Corrective maintenance refers to fixes and patches for issues that under-

mine the software’s functionality (E Burton Swanson, 1976). Subsequent work puts

the maintenance activities into two classes of enhancement activities or maintenance

activities (Lientz, E. Burton Swanson, and Tompkins, 1978). This classification is

more clean cut, as adaptive maintenance can be dealt with by perfective or corrective

maintenance requirements. Kitchenham et al., 1999 also adopts this typology and

further provides three sub-classes for enhancement implementations such as change

in existing requirements, change to accomodate new system requirements, and imple-

mentation enhancements. More recently, a typology by Chapin et al., 2001 provides a

decision tree model to classify software maintenance activities into 12 update typolo-

gies. Depending on the answer to three questions, “was the software changed?” “was

the source code changed?” “was the function of the software changed?” the mainte-

nance activities could be clustered into changes in the support interface, documen-

tation, business rules, and software properties. Although this framework is detailed,

the classification relies on in-depth information provided by the software developer.

Also, these differences are not directly distinguishable by the users. Therefore, this

study adopts the simple two-class software maintenance typology (Lientz, E. Bur-

ton Swanson, and Tompkins, 1978; Kitchenham et al., 1999) which is comprised of

enhancement activities and maintenance activities to understand the updates be-

ing made in mobile apps that have more distinguishable characteristics from a user

perspective.

A recurring argument in software maintenance literature is the high cost of main-

tenance efforts. The cost minimization approach puts more emphasis on manag-

ing the activities related to software maintenance. For the effective management of

this cost, a large body of literature is dedicated to the supply side issues in soft-
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ware maintenance. Banker and Sandra A Slaughter, 1997 develops a DEA model

to demonstrate scale economies in software maintenance. They find that batching

minor maintenance requests into larger planned releases can alleviate software main-

tenance costs. Subsequently, Banker, Davis, and Sandra A Slaughter, 1998 shows

that usage of software development practices such as code generators and packaged

software may affect the software complexity , which is associated with higher software

maintenance efforts. M. S. Krishnan, Mukhopadhyay, and Kriebel, 2004 develops a

cost-minimizing dynamic optimization model to derive the optimal major update pol-

icy. Arora, Caulkins, and Telang, 2006 considers the trade-off relationship between

time-to-market and after-sales software failures to determine the optimal market en-

try time and maintenance effort level. (Kulkarni et al., 2009) considers the total cost

of software maintenance in a queuing system to determine the optimal order of batch

sizes and service rates. Narayanan, Balasubramanian, and Swaminathan, 2009 stud-

ies the effect of having a balance between variety and specialization in the developer

team’s experience on a software firm’s maintenance effort. Recently, Ji et al., 2011

develops an optimal development effort, initial feature choice, and service termination

policy by considering the total discounted profit for a software system throughout its

lifetime. However, the system profit is derived from the number of features in the

system rather than its market valuation by the users. Collectively, prior literature

treats software maintenance as a reactive task, where its cost needs to be minimized.

However, studies acknowledge that the traditional approach of software main-

tenance may no longer apply to the fast-changing marketing trend and technology

evolution alone (Bennett and Rajlich, 2000). Specifically, mobile apps have a dif-

ferent characteristic and environment (Salmre, 2005) which puts more emphasis on

the proactive use of enhancement updates. First, mobile apps are restricted by the

capability of the device that is running the application. Device capability restric-

tions include screen size, battery run time, and storage space. Second, on average,

62



we see more frequent updates made in mobile apps because their sizes are relatively

small (i.e., several thousand lines of code) which makes it easier to implement updates.

Third, mobile apps are accessed anytime and anywhere. This means that users access

apps at higher frequencies, but in shorter sessions. This requires the app to minimize

delays and optimize their performances. Finally, updates in mobile apps are generally

associated with substantial advertising behavior. Unlike IT system software mainte-

nance activities, mobile app maintenance activities are more similar to launching a

successive generation of an existing product. Moreover, each successive generation of

a product aims to obtain sales by expanding the market through enhanced features

(Norton and Bass, 1987). Mehra, Seidmann, and Mojumder, 2014 develop a model

for packaged software life-cycles, and makes an assumption that marketing activities

associated with the upgrade reaches all possible new users they could attract. For

mobile apps, once an update is implemented, advertisements containing information

about new features and contents are deployed afterwards via company websites, ad

networks, and social network services.

Because of these differences, mobile app developers must account for some con-

straints when introducing new features and contents through software maintenance

activities. First, software maintenance activities should be conducted promptly, min-

imizing disruptions to the users’ experience. Performance issues, slow start times,

poor network connection, and server downtime due to maintenance may all deter

users who have short attention spans and low tolerance for accessibility issues. Sec-

ond, to ensure quick and responsive app performance while meeting various device

limitations, the application size needs to be continuously optimized. For example,

holiday special editions for an app can be applied only for a limited time and removed

for a subsequent update. Third, mobile app developers should constantly plan ahead

and release new versions of the application to attract new users and keep existing

users (Greer and Ruhe, 2004). Meeting these constraints is not an easy task.
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3.2.2 Moderators of Software Maintenance Effectiveness

The importance of a well-planned maintenance schedule is well recognized in physi-

cal goods manufacturing. Proper maintenance will help improve the lifetime of the

equipment and avoid any unplanned maintenance tasks. The concept of preventive

maintenance has proven that keeping a regular schedule of performing maintenance

tasks even without system failures can (1) decrease equipment downtime and num-

ber of major repairs needed, (2) conserve assets in better conditions and eliminate

premature replacement of machinery and equipment, (3) reduce overtime costs and

maintenance labor cost by working on a scheduled basis instead of a crash basis, and

(4) improve safety and quality conditions (Krajewski, Ritzman, and Malhotra, 2018).

These benefits are obtained because the workers who are directly impacted by the

maintenance tasks can prepare for the upcoming maintenance schedule beforehand

and organize their tasks to minimize the loss from the disruption (Jonsson, 2000).

The importance of keeping regular maintenance schedules are greater for products

and services where product failure and service downtime impacts the users’ experi-

ence directly. We argue that the sense of predictability created from the regular

schedules can help the users of a product/service in a similar fashion. From a users’

perspective, preventive maintenance allows users to prepare for upcoming disruptions

and organize personal activities to minimize the impact. S. Garg et al., 1998 endorses

the adoption of preventive maintenance for software systems because the demand for

high reliability and availability is escalating. Therefore, failure in software systems

can arise from both unreliable performance and lack of content availability. While

majority of software maintenance literature focuses on sustaining the stability and

reliability of the system, failures from content availability is mostly overlooked. For

enhancement updates, the aim of preventive software maintenance should be to pro-

vide new features and contents on a regular schedule to prevent users from depleting

the content and churn.
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In the context of mobile apps, an app developer that keeps a regular update sched-

ule would divide the app lifetime into fixed-term maintenance sprints that typically

has a duration of two or three weeks. The content of each maintenance is determined

by considering user expectations, business value and implementation risks. An ex-

ample is the Facebook app with the most recent version number reaching 214.0 by

March 28; Facebook has consistently introduced updates around every 1-2 weeks with

few exceptions. Most of these updates include generic descriptions about the updates

being made as follows. “We update the app regularly so we can make it better for

you. Get the latest version for all of the available Facebook features. This version

includes several bug fixes and performance improvements.”

However, despite the benefits of maintaining a regular fixed schedule, there may

exist other factors that influence the update schedules. Instead of maintaining a

fixed maintenance schedule, firms can focus their enhancement efforts on specific

points in the app’s life cycle to maximize returns. This demand sensing can be made

by observing the trajectory of their app’s performance or by acquiring information

about the overall market dynamics.

Observance of the app’s adoption trends over the lifecycle may provide useful

information for formulating strategies including timing of enhancement updates (An-

derson and C. P. Zeithaml, 1984). Prior literature states that the most fundamental

variable in determining an appropriate business strategy is the stage of the prod-

uct lifecycle (Hofer, 1975). Literature mentions four stages that consists a product’s

lifecycle, namely, introduction, growth, maturity, and decline. However, for digital

products such as mobile apps, adoption occurs instantaneously such that there is

no clear distinction between introduction and growth stages. Also, once peaked in

adoption, apps have difficulty in sustaining the user base because of the short atten-

tion span of mobile users. Therefore, once an app reaches the peak in adoption, the

constant decline in adoption follows right after. Relying on these observations, we
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define the lifecycle stages of a mobile app as three stages comprised of stage1 (launch

to initial peak in adoption), stage2 (initial peak in adoption to 50% retention), and

stage3 (50% peak in adoption to termination). We included a hypothetical second

stage in a seemingly two-stage lifecycle curve because the initial peak in adoption

may serve as a strong cue for developers to deploy aggressive user acquisition and

retention strategies. By investigating the effect of enhancement efforts, especially at

this stage, may provide additional insights on the effectiveness of efforts deployed in

this critical period in the app lifecycle.

Moreover, the level of overall market dynamics may be useful in timing the en-

hancement updates as well. Here, we define market activity as the aggregate download

for the entire app subcategory. This market activity may have predictable surges due

to seasonal in-flow of users in the market. Prior literature acknowledges that season-

ality increases the potential market size, which is generally considered positive, espe-

cially for products with extremely short lifecycles (Calantone et al., 2010; Krider and

Weinberg, 1998). Although not all seasons are predictable, there may exist certain

factors that create on-and-off seasons for mobile apps such as holidays, government

actions, industry traditions, weather, social phenomena, summer and school years.

Additionally, industry reports suggest that seasonal customers, those who use extra

available time on apps, drive seasonal demand for mobile apps (Liftoff, 2017; Liss,

2017). Exploiting this predictable surge in demand, many app developers launch hol-

iday specific theme packs, merchandise, and in-app events to attract the additional

seasonal demand.

These could be factors that perhaps a firm may further enhance the update effec-

tiveness despite the disruption in update schedule regularities.
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3.3 Sample Construction and Data Description

In this section, we discuss the sample construction process of our data and describe

the variables included in the analysis.

3.3.1 Sample Construction

The data used for this study comes from a proprietary Application Programming

Interface (API) server of a leading app store intelligence company. Not only does

the firm maintain daily observations on the app, publisher, and market performance

metrics, but they also collect information on version history, update date, and update

log text files for the apps contained in the database. We compile a sample of U.S. iOS

mobile gaming apps starting from January 2015 to December 2017. After excluding

apps that have missing observations or gaps in the time series, we obtained a sample

of 4,129 apps which contains information on 42,772 updates. The data extraction was

performed using the university’s high-performance cluster computing server (HPC)

for parallel processing of extraction and database manipulations. Certain metrics

included in our empirical model such as the standard deviation of inter-update times

requires each app to have at least three or more updates. After dropping apps that

have less than three updates, we are left with 2,049 apps. Further, we run a Bass

model non-linear OLS estimation on each app time series. This further dropped apps

that failed to converge. After these data manipulations, we obtained a final sample

of 433 apps with 4,052 updates.

The mobile gaming app category serves as a nice research setting because gaming

apps are known to have the shortest average life cycle among all mobile app categories

and have the highest update frequency. With our limited three-year observation

period, mobile games allow us to study the update effects in varying frequencies

across the entire life cycle for a fair amount of apps within our sample.
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3.3.2 Variable Description

The unit of analysis in this study is individual mobile app updates. Therefore, for

each variable description, we denote subscripts i to denote the updates, j for apps, k

for developer, c for subcategory, and t for day. The gaming app represents a mobile

app category and subcategories are the 18 game genres such as strategy, role-playing,

action, shooting, family, puzzle, etc. The list of variables is also summarized in Table

3.1.

Dependent Variable

The dependent variable lndownijt is the natural logged number of daily downloads

for update i in-app j at time t. The number of downloads is highly correlated with

the user base size in the app. Revenue generation for freemium apps through in-app

purchase and in-app advertising also rely on the number of users in the app, which

makes the number of downloads a fine measure to gauge an app’s performance.

Independent Variables of Interest

We rely on a difference-in-differences (DID) design to estimate the effect of content

updates. The DID estimator is constructed as an interaction between a set of binary

indicators to denote the before the update and after update periods (aftert), and to

denote the treatment and control group association of the observation (treatj).

Once we have estimated the effect of content updates on the app’s downloads,

we further interact the DID estimator with a set of moderators to estimate the ef-

fectiveness of certain updating contexts. To estimate the enhancement update effect

while keeping a regular schedule, we include the rolling standard deviation of inter-

update times (upsdijt). As the number of updates accumulates and new pieces of

inter-update time information is added, the standard deviation is recalculated based

on the additional observation. One caveat is that we have to limit our sample to

68



Table 3.1: List of Variables Used in the Model

Variable Description
Dependent Variable

lndownijt Natural logged number of daily downloads for up-
date i in app j at time t

Independent Variables
aftert Binary variable coded as 0 for before update pe-

riods (i.e., 2 days) and 1 for after update periods
(i.e., 3 days)

treatj Binary variable coded as 0 for control group and 1
for treatment group

upsdijt Rolling standard deviation of inter-update times
updated at each update i and held constant until
the next update

LCSTAGEijt A set of dummy variables indicating the life cycle
stages (stage1: launch-initial peak in downloads,
stage2: initial peak-50% retention, stage3: 50%
retention-service termination

mkttrct Natural logged total number of app daily down-
loads for all the apps in mobile game subcategory
c at time t

hhict Sum of squared market shares (i.e., daily download
shares) in all apps within a mobile game subcate-
gory c at time t

ratingjt Average of five star user rating of app j until time
t

sincelaunchijt The number of days passed for update i at time t
weekdayt A set of dummy variables indicating the day in a

week (0: Sunday - 6: Saturday)
montht A set of dummy variables indicating the month in

a year (0: January - 11: December)
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apps that have introduced at least three updates or more to be able to calculate this

metric. To estimate the enhancement update effects at different lifecycle stages, we

include a vector of dummy variables denoting the life cycle stage around the time of

the update (LCSTAGEijt). We define three life cycle stages of an app — stage one

from launch date to date of initial peak in daily downloads, stage two from date of

initial peak in daily downloads to date when the daily downloads decrease to 50% of

the initial peak, and stage three from date of 50% of the initial peak to the date of

app service termination. In our sample, the developer removes the app from the app

market when the service is terminated, and this results as a dropout at the end of

the time series in our dataset. To estimate the enhancement update effect at varying

market activity levels, we include the aggregate logged daily downloads in the entire

app subcategory (mkttrct).

Control Variables

For controls, we include the Herfindahl-Hirschman Index (hhict) of a gaming app

subcategory to control for the competition intensity in the subcategory. We include

the average five-star rating score for the app at time t (ratingjt). This variable

partially controls for any unobserved changes other than the content update in the

quality of the app, which may in turn influence the number of downloads. We include

the count of days since the app was launched in the market up to the day the content

update is being made (sincelaunchijt). This partially controls for the maturity of the

app, which may affect the users’ degree of familiarity of the contents and changes in

an update and the developer’s degree of experience or stability of the system through

managing the app over time. We also include time fixed effects as dummy variables

to denote the day of the week (weekdayt) and the month in a year (montht). These

time fixed effects control for unobserved time correlated shocks in the app market

such as seasonal behaviors. Table 3.2 shows the summary statistics and correlations
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of the key variables used in our model.

3.4 Econometric Model

In this research, we assess (1) the effect of a content update in a mobile app and

(2) the moderation effects of three different update contextual factors on the content

update. To make an unbiased estimation, we need to benchmark the changes in

the app’s performance against a control group which did not introduce a content

update. To this end, we formulate a DID model to estimate the effects of interest.

While constructing a DID sample, we face challenges in (1) identifying and classifying

content updates and (2) constructing the control group.

3.4.1 Classifying Content Updates

In software development, developers follow a convention of numbering the versions

of the software using semantic numbering. Semantic numbering refers to a three-

digit numbering system (i.e., Major.Minor.Patch) that developers use to classify the

amount of content being changed to the original code based on the degree of risk and

number of function points. However, many developers happen to use their number-

ing system rather than following this convention. Therefore, a simple classification

based on the version numbering may not be able to categorize all the updates in our

sample. Among the 42,772 updates in the initial dataset, 24,250 updates are major

content updates, 15,383 updates are minor bug fixes and patches, and 3,139 updates

are unclassified. To classify the updates into content updates and bug-fix/patches,

we deploy a supervised machine learning algorithm to analyze the update logs and

automatically classify each update. We rely on the scikit-learn library in python

to develop a machine learning-based classification model. This simple approach is

sufficient in classifying the updates as the text information mostly consists of direct

information without sentiments. To maximize the accuracy of the classification al-
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Table 3.2: Descriptive Statistics and Correlation Matrix

Variable µ σ Min Max 1 2 3 4 5 6 7 8 9 10

1 lndown 4.54 2.66 0.00 11.96
2 after 0.60 0.49 0.00 1.00 0.00
3 treat 0.50 0.50 0.00 1.00 0.26 0.00
4 upsd 13.33 22.11 0.00 225.74 -0.04 0.07 0.00
5 hhi 0.05 0.08 0.00 1.00 0.03 -0.01 0.00 -0.05
6 rating 4.36 0.50 2.00 5.00 0.08 0.00 0.00 0.04 0.00
7 mkttr 11.17 1.21 3.50 13.50 0.22 0.01 0.00 0.04 -0.30 -0.02
8 sincelaunch 209.64 162.89 1.00 841.00 -0.14 0.01 0.00 0.41 -0.15 0.06 0.06
9 lcstage1 0.32 0.47 0.00 1.00 -0.03 -0.01 0.00 -0.11 0.11 0.06 -0.14 -0.35
10 lcstage2 0.06 0.24 0.00 1.00 0.14 0.00 0.00 -0.04 -0.02 0.01 0.11 -0.10 -0.17
11 lcstage3 0.62 0.49 0.00 1.00 -0.04 0.01 0.00 0.13 -0.09 -0.06 0.08 0.38 -0.88 -0.32

Note. Bold denotes significance at p < .05
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gorithm, we apply the following steps to the original dataset that contains 101,059

sentences. The update logs contain an average of 2.4 sentences. Considering that

prior text analysis tasks required a minimum of 3,000 to 6,000 sentences, we have a

sufficient number of text data for the classification algorithm. First, we pre-process

the text data included in the update logs. We separate all the words within the

text (tokenization), and then set all the words in lower case. Next, we shorten the

words into their root stems (lemmatization/stemming). Then, we remove English

stop words (e.g., a the, and, not, in, on, etc.) and punctuation. For the list of En-

glish stop words, we rely on a list retrieved from python’s natural language toolkit

library (NLTK) (http://www.nltk.org) which is commonly used in text mining tasks.

Second, we construct a vector of word counts for each update log (count vector-

ization). Third, we apply a weight to each word using the text frequency-inverse

document frequency (tf-idf) approach. This weighting scheme is applied to over 83%

of text-based recommendation systems in digital libraries. For term i in update log

j, the tf-idf weight wi,j is calculated as follows.

wi,j = fi,j × log(N
gi

) (3.1)

Where, fi,j is the number of occurrences of term i in update log j, N is the total

number of update logs, and gi is the number of documents that contain the term i.

The inverse document frequency is a measure of how much information each word

provides. If a term frequently appears across all documents, then the term does

not provide much information in classifying the documents. Next, we split the data

that follows the semantic version numbering scheme into a training dataset and test

dataset in a ratio of 70:30. We fit a naive Bayes classification model to predict the

classification outcomes. The classification algorithm is based on Bayes’ Theorem

assuming that predictors are independent. Consider a document classification prob-

lem, where a document is broken down into a bag of words (Harris, 1954) where the

probability that the ith word of a given document occurs in a document class C as
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follows.

p(wi | C) (3.2)

Then the probability that a given document D contains all of the words wi, given a

class C is

p(D | C) =
∏
i

p(wi | C) (3.3)

According to Bayes Theorem,

p(C | D) = p(C)p(D | C)
p(D) (3.4)

In our case, we have two mutually exclusive document classes, E and ¬E (i.e., En-

hancement update and maintenance update). Such that p(E | D) + p(¬E | D) = 1.

Then the probability that a document D containing all of the words wi, given a class

E and ¬E is

p(D | E) =
∏
i

p(wi | E) (3.5)

p(D | ¬E) =
∏
i

p(wi | ¬E) (3.6)

The Bayes’ Theorem yields the a statement of probability in terms of likelihood as

follows.

p(E | D) =p(E)
p(D)

∏
i

p(wi | E) (3.7)

p(¬E | D) =p(¬E)
p(d)

∏
i

p(wi | ¬E) (3.8)

Dividing Equation 3.7 by 3.8 gives a likelihood ratio as follows.

p(E | D)
p(¬E | D) = P (E)

p(¬E)
∏
i

p(wi | E)
p(wi | ¬E) (3.9)

Taking the logarithm of Equation 3.9 yields the log-likelihood ratio.

ln p(E | D)
p(¬E | D) = ln P (E)

p(¬E) +
∑
i

ln p(wi | E)
p(wi | ¬E) (3.10)
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The document of update logs can be classified as enhancement updates if p(E | D) >

p(¬E | D) or ln p(E|D)
p(wi|¬E > 0 and maintenance updates otherwise.

The Naive Bayes classifier is easy and fast to implement, and it is also capable

in dealing with multiple classes (i.e., C > 2). When the assumption of independence

holds, it is know to perform better than other models with less training data. For

numerical predictors such as counts of wi, the model assumes normal distribution of

the variables. As the model assumption of independence and normal distribution of

predictors can be a strong assumption, we test for alternative models and compare

the accuracy. A 5-fold cross validation result yielded a 73% accuracy for the native

Bayes classification model. We chose this model for unclassified update predictions

because it yielded the highest accuracy compared to alternative models such as logistic

regression (70%), support vector machines (68%), and K-means clustering (65%). The

final classified sample resulted in 26,349 major updates and 16,423 minor bug fix and

patches. We merged this version history dataset with the app performance dataset

to obtain our final sample.

3.4.2 Control Group Construction

The content updates in our sample occur at different time points, and having multiple

updates within a single app makes identification of a proper control group difficult.

To overcome this issue, we rely on the event study literature stream which estimates

abnormal returns of corporate events on stock price time series by extrapolating the

time series using a linear prediction. To predict the adoption patterns of mobile apps,

we rely on the Bass diffusion model (reference) which is formulated as follows (Bass,

1969).

F (t) = 1− e−(p+q)t

1 + q
p
e−(p+q)t (3.11)

where F (t) is the portion of the potential market that has adopted the mobile app

by time t, p is the coefficient of innovation, and q is the coefficient of imitation. For
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each app, we fit the Bass model curve to the daily download time series and obtain

these parameters. We then use the fitted model to predict the daily downloads

after the content update. The choice of the Bass model to construct the baseline

prediction is based on three reasons. First, we do not have an a priory theoretical

causal model to explain the trajectory of mobile app downloads for freemium apps.

Second, due to the unique non-linear shape of the mobile app adoption pattern, we

find that the Bass model shows highest fit to observed data points compared to other

time series methods such as moving averages or exponential smoothing techniques.

Third, the Bass model contains parameters that represent innovators and imitator

user segments, which represent the importance of network effects and the essence

of why people download mobile apps. Finally, we can construct the control group

observations from the identical observation and therefore, satisfy the parallel path

assumption during pre-treatment periods(Autor, 2003). We recover the parameter

values from the time series using a non-linear OLS estimation. In order to reduce the

computation time, we split the data into 14 partitions of 150 apps and ran 14 parallel

processors on the high-performance cluster computing (HPC) server. During this

process, some app time series fail to converge within 1,000 iterations and therefore,

are dropped from our subsequent analyses. However, for the apps that converged, we

obtained an average R2 of 0.995, which shows an overall good fit of the model (Figure

3.1). After excluding the apps that the Bass model estimation failed to converge, we

are left with a final sample size of 433 apps with 4,052 updates.

3.4.3 Difference-In-Differences Analysis

Following the analysis in event study models (Hendricks and Singhal, 2005), we limit

our observation sample to two days before the update and three days after the update

including the day of the update to reduce concerns of unobserved confounding events

in the app. Therefore, for each update, we have a total of 5 days. To assess the effect
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Figure 3.1: Average Logged Daily Downloads with Bass Model Predictions

of content updates on the performance of mobile apps, we formulate a difference-in-

differences regression, where the main dependent variable is the performance measure

lndownijt. The independent variables are the binary treatment indicator treatj, the

binary indicator for the post treatment periods aftert, and the interaction term

of these two indicators. In addition, we include control covariates to account for

unobserved firm, app, and market characteristics. More specifically, we estimate the

following regression for update i, app j, at time t.

lndownijt = β0 + β1aftert + β2treat · afterijt + δZijt + τm + τd + αi + εijt (3.12)

where the coefficient β2 of the interaction term is our key DID estimator of interest.

The main effect of treatj is dropped from the model because it cannot be identified

when update fixed effects αi are included in the model. Zijt is a vector of control

covariates (i.e., hhict, ratingjt, and sincelaunchijt). τm and τd are sets of the month

and weekday time fixed effects that control for seasonality. We estimate the model

with standard errors clustered by apps.
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The identification of the treatment effect depends on the satisfaction of the sta-

ble unit treatment value assumptions (SUTVA) (Imbens and Rubin, 2017). SUTVA

consists of two components. First, the treatment applied to one unit does not af-

fect the outcome of another unit, and second, there is only a single version of each

treatment level. For mobile app updates, each update event is contained within the

update. Even for competition effects, this may not affect the downloads of another

app as users can download multiple apps and keep them in their devices. Regarding

the possibility of spillovers from prior updates, content updates take place when the

developer thinks that the users have depleted the current stock of contents within the

app. Also, we specify a short observation window for the before and after updates

which are even shorter than an aggressive content update cycle of one week. There-

fore, we believe that spillovers from other treatments are not a concern for content

updates. Next, regarding the consistency of the treatment effects, we have deployed

a machine learning classification model to isolate out the major content updates and

minor bug fixes and patches. Further, we account for update and app fixed effects

and rely on a within-transformation to estimate the content update effects. Although

there may be some variations in the number of content updates, the essence of the

content update representing major changes to the code and imposing a risk to the

application remains consistent across all content updates within a single app. This

is a reasonable assumption as developers have to manage the enhancement content

development within constrained resources and tight release schedules. Also, because

the app performance needs to be optimized with consistent app size, there is a limit

to the extent of changes that can be made in a single enhancement update.

3.4.4 Update Strategies

Upon estimating the content update effect via DID regression, we proceed to estimat-

ing the moderating effects of the proposed update strategies. First, we estimate the
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effect of a enhancement under schedule regularity by interacting upsdijt, the rolling

standard deviation of inter-update times with the DID estimator. Specifically, we

estimate the following regression for update i, app j, at time t.

lndownijt =β0 + β1aftert + β2after · upsdijt + β3treat · upsdijt

+ β4treat · afterijt + β5after · treat · upsdijt

+ δZijt + τm + τd + αi + εijt

(3.13)

where the coefficient of the three-way interaction β5 is our estimator of interest. The

first order term of upsdijt is added to the vector of control covariates Zijt.

To estimate the moderating effects of lifecycle stages, we incorporate a vector of

life cycle stage binary indicator variables as LCSTAGEijt, and interact it with the

DID estimator. Specifically, we estimate the following regression for update i, app j,

at time t.

lndownijt =β0 + β1aftert + β2after · LCSTAGEijt

+ β3treat · LCSTAGEijt + β4treat · afterijt

+ β5after · treat · LCSTAGEijt

+ δZijt + τm + τd + αi + εijt

(3.14)

where the coefficient of the three-way interaction β5 is our estimator of interest. The

first order term of LCSTAGEijt is added to the vector of control covariates Zijt.

To estimate the moderating effects of market activity levels, we introduce mkttrct,

the total daily downloads in a mobile game genre subcategory and the interaction

between the DID estimator. Similarly, we estimate the following regression for update

i, app j, at time t.

lndownijt =β0 + β1aftert + β2after ·mkttrct + β3treat ·mkttrijt

+ β4treat · afterijt + β5after · treat ·mkttrijt

+ δZijt + τm + τd + αi + εijt

(3.15)
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where the coefficient of the three-way interaction β5 is our estimator of interest. The

first order term of mkttrct is added to the vector of control covariates Zijt.

3.5 Empirical Results

3.5.1 Difference-in-Differences Analysis

In this section, we summarize and report our findings as shown in Table 3.3.

First, we report the estimates of Equation 3.12 in model (1), Table 3.3. We find

that updating a mobile app has a significant and positive impact on logged daily

downloads (β = 0.051, p < 0.01). This coefficient shows that introducing a content

update leads to an average of 5.23% ((e0.051 − 1)× 100) increase in daily downloads.

Second, we report the estimates of Equation 3.13 in model (2). We find that the

standard deviation of inter-update times has a negative and significant interaction

with the DID estimator (β = −0.002, p < 0.05). The elasticity of the standard

deviation of inter-update time shows that a 1% increase in the inter-update time

standard deviation leads to a 1.96 percentage point decrease in content update effect.

Third, we report the estimates of Equation 3.14 in model (3). We find multiple

significant interactions between the DID estimators and the life cycle stage variables,

both for two-way and three-way interactions. We first calculate the marginal effects

of content updates made at the second stage and third stage compared to the base

level of content updates made in the first stage of the life cycle. We find that the

marginal effect of a content update made in the second stage of the life cycle leads

to a 44.7% increase in logged daily downloads compared to content updates made in

the first stage. Also, content updates made in the third stage of the life cycle leads

to a 68.0% decrease in logged daily downloads compared to content updates made

in the first stage. Finally, we report the estimates of Equation 3.15 in model (4).

We find a positive significant interaction effect of market activity on content updates

(β = 0.061, p < 0.01). The calculated elasticity shows that a 1% increase in market
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Table 3.3: Difference-in-Differences Estimation Results

DV: lndownijt (1) (2) (3) (4)

aftert −0.011 −0.019 0.017 −0.001
(0.046) (0.046) (0.046) (0.059)

aftert × treatij 0.051 ∗ ∗∗ 0.076 ∗ ∗∗ 0.073 ∗ ∗∗ −0.640 ∗ ∗∗
(0.019) (0.022) (0.025) (0.195)

upsdijt −0.000 0.000 −0.000 −0.000
(0.000) (0.000) (0.000) (0.000)

hhict −0.140 −0.140 −0.141 −0.149∗
(0.087) (0.087) (0.087) (0.089)

upcountijt −0.029 −0.030 −0.038 −0.042
(0.045) (0.045) (0.045) (0.055)

ratingjt −0.160∗ −0.160∗ −0.162∗ −0.156∗
(0.085) (0.085) (0.084) (0.085)

mkttrct 0.422 ∗ ∗∗ 0.422 ∗ ∗∗ 0.422 ∗ ∗∗ −0.001
(0.025) (0.025) (0.025) (0.003)

sincelaunchijt 0.002 0.002 0.003 0.003
(0.004) (0.004) (0.004) (0.004)

lcstage2ijt 0.136∗ 0.136∗ −0.254 ∗ ∗ 0.118
(0.082) (0.082) (0.107) (0.080)

lcstage3ijt −0.229 ∗ ∗ −0.228 ∗ ∗ 0.231 ∗ ∗∗ −0.243 ∗ ∗
(0.098) (0.098) (0.087) (0.098)

aftert × upsdijt 0.001
(0.000)

treatij × upsdijt −0.001
(0.001)

aftert × treatij × upsdijt −0.002 ∗ ∗
(0.001)

aftert × lcstage2ijt −0.013
(0.013)

aftert × lcstage3ijt −0.037 ∗ ∗∗
(0.012)

treatij × lcstage2ijt 0.871 ∗ ∗∗
(0.273)

treatij × lcstage3ijt −0.868 ∗ ∗∗
(0.257)

aftert × treatij × lcstage2ijt −0.157 ∗ ∗∗
(0.041)

aftert × treatij × lcstage3ijt −0.005
(0.038)

aftert × mkttrct 0.001
(0.002)

treatij × mkttrct 0.814 ∗ ∗∗
(0.049)

aftert × treatij × mkttrct 0.061 ∗ ∗∗
(0.017)

Constant 0.470 0.474 0.523 0.704
(0.891) (0.893) (0.889) (0.926)

Update FE YES YES YES YES
Month FE YES YES YES YES
Weekday FE YES YES YES YES
Observations 20,254 20,254 20,254 20,254
R-squared 0.207 0.207 0.215 0.411
Number of updateid 4,052 4,052 4,052 4,052

Robust standard errors clustered by app in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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activity increases the content update effect by 87.4%.

We also plot the predicted levels of the logged daily downloads by treatment /

control group (See Figure 3.2). We predict the outcome levels at mean and ±1 stan-

dard deviation values (i.e., High/Low) for the continuous variables, upsdijt, mkttrct,

and the three stages for the discrete LCSTAGEijt variable. As we can see in Figure

3.2(a), at low levels of the inter-update time standard deviation, the update effect

creates significant differences in daily downloads (χ2 = 12.28, p < 0.01). While this

difference is still significant at mean levels of the inter-update time standard devia-

tion, the gap closes as update regularity decreases and is no longer significant at high

levels of the inter-update time standard deviation (χ2 = 0.09, p > 0.10). This shows

that the benefits of content updates can be nullified at high levels of irregular update

times. Regarding updates at different life cycle stages (Figure 3.2(b)), we find that

content updates made in the second stage show the strongest impact on the app’s

performance compared to the control group performance (χ2 = 9.18, p < 0.01). We

also find that the content update effect does not yield significant differences in the

first stage of the life cycle. Moreover, interestingly, we find that a content update

made in the third stage decreases the performance of the app compared to the control

group (χ2 = 9.79, p < 0.01). Finally, in Figure 3.2(c), we find that content updates

generates a significant positive boost for the app’s performance at all levels of market

activities (Low-Mean-High). However, as the level of market activity increases, the

content update effect increases proportionally as well.

3.5.2 Post-hoc Analysis

In this section, we answer additional questions that we have identified during the

main analysis. Specifically, by looking at the average inter-update times across all

the apps in our sample, we see that the average update interval is around one month

(28 days). Even for apps that aggressively introduce content updates, they require at
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(a) after×treat×upsd

(b) after×treat×LCSTAGE

(c) after×treat×mkttr

Figure 3.2: Logged Daily Download Predictions by Treatment
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Figure 3.3: Logged Daily Download Predictions by Treatment×Weekday

least one week to bundle new contents together and implement them in the currently

serviced app. Therefore, for a developer, it would be interesting to know in that

inter-update time, when the best time would be to introduce an update. To answer

this question, we take a look at a single week and identify the weekday which is the

best time to introduce an update. Our estimation is done by interacting the update

DID variable with the weekday fixed effects. The results are summarized in Table

3.4, and the linear predictions are plotted in Figure 3.3.

As we can see from the results in Table 3.4 and Figure 3.3, compared with the

control group, the treatment group experiences the content update effect in varying

degrees across the days in a week. Especially, there is a significant boost in the update

effect, especially when the content update is introduced in either Thursday or Friday.

The update effect becomes non-existent when it is introduced on Monday through

Wednesday. When a developer releases enhancements, it is therefore also important

to take the day of the week into consideration to further enhance the benefits from a

content update.
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Table 3.4: Content Update and Weekday Interaction Analysis

DV: lndownijt Coefficient Standard Error

aftert −0.013 (0.058)
aftert × treatij 0.104 ∗ ∗ (0.044)
weekday(Mon)t 0.010 (0.012)
weekday(Tue)t −0.039 ∗ ∗∗ (0.014)
weekday(Wed)t −0.001 (0.019)
weekday(Thu)t −0.077 ∗ ∗∗ (0.019)
weekday(Fri)t −0.024 ∗ ∗ (0.012)
weekday(Sat)t −0.005 (0.009)
aftert × weekday(Mon)t 0.033 (0.021)
aftert × weekday(Tue)t 0.047 ∗ ∗ (0.022)
aftert × weekday(Wed)t 0.053 ∗ ∗ (0.025)
aftert × weekday(Thu)t 0.068 ∗ ∗∗ (0.023)
aftert × weekday(Fri)t 0.029∗ (0.016)
aftert × weekday(Sat)t 0.014 (0.012)
treatij × weekday(Mon)t 0.007 (0.033)
treatij × weekday(Tue)t 0.057 (0.043)
treatij × weekday(Wed)t 0.063 (0.051)
treatij × weekday(Thu)t 0.193 ∗ ∗∗ (0.055)
treatij × weekday(Fri)t 0.100 ∗ ∗ (0.045)
treatij × weekday(Sat)t 0.031 (0.028)
aftert × treatij × weekday(Mon)t −0.093∗ (0.056)
aftert × treatij × weekday(Tue)t −0.114∗ (0.065)
aftert × treatij × weekday(Wed)t −0.156 ∗ ∗ (0.069)
aftert × treatij × weekday(Thu)t −0.123 ∗ ∗ (0.058)
aftert × treatij × weekday(Fri)t −0.037 (0.056)
aftert × treatij × weekday(Sat)t −0.017 (0.040)
Constant 0.778 (0.889)

Update FE YES
Weekday FE YES
Month FE YES
Observations 20,254
R-squared 0.212
Number of updateid 4,052

Control covariates suppressed for brevity
Robust standard errors clustered by app in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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Next, we focus on the negative effect of enhancement updates in the third stage

of the app’s lifecycle. One explanation for the negative enhancement update effect

in the last stage of the life cycle is that developers changed their update objectives

from adding value to the users into revenue extraction. Milking is a common strategy

for declining products and services, which allows the firm to secure capital for future

investments. Such milking strategies are not explicitly mentioned in update logs.

Therefore, we identify a proxy variable that can capture the shift in strategic objec-

tives. A common milking strategy observed in mobile games is introducing various

in-app advertisements that can further increase the revenue stream of the developer.

However, because these in-app advertisements can disrupt the immersion and flow of

the users’ experience, developers are cautious in introducing them in early stages of

the app’s lifecycle. We introduce in-app advertising revenue as an additional variable

that proxies the monetization intentions of the developer. We estimate a four-way

interaction between the before/after, treatment, lifecycle stage, and adrevenue vari-

able and plot the predicted daily downloads in Figure 3.4. The addition of the

advertisement variable allows us to estimate the lifecycle stage effects while holding

advertising revenues at the mean. We find that the enhancement update effects for

the first and second stage remains consistent with the main model findings. However,

the third stage negative impact of enhancement update effect becomes insignificant

(F = 2.12, p > 0.1). This supports our explanation that third stage updates may be

focused on revenue extraction.

3.5.3 Robustness Checks

To demonstrate the robustness of our findings, we (1) address the possibility of an al-

ternative explanation for the lifecycle stage estimation arising from user base scale ef-

fect arguments, (2) address the potential serial correlation bias, (3) conduct a placebo

test around the before/after period, (4) specify an alternative fixed effects model to
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Figure 3.4: Logged Daily Download Predictions with Ad Revenue

deal with concerns of the short time panel, (5) estimate the effect of content updates

on an alternative dependent variable using survival analysis, and (6) provide an es-

timate for a more granular split of the life cycle stages (i.e., 5-stage model). The

results of the alternative models are presented in Appendix B.

First, an alternative explanation may exist regarding our findings from the lifecycle

stage interaction effect. The enhancement effects can also be stronger because we

simply have more users during the second stage. Then the enhancement update

reinforcing effect may be driven by the user base scale rather than the lifecycle stage.

To see whether this is the case, we estimate a panel quantile regression model with 100

bootstrap replications that does not control for lifecycle stages, but instead, estimates

the enhancement update effect at 10 percent quantiles of the daily downloads. The

result shows (Figure 3.5) insignificant enhancement update effects across all quantiles

which suggests that the significant interaction effect is not driven by the size of the

user base.

Second, we address a potential bias that may arise from serial correlation in our
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Figure 3.5: Quantile Regression Plot

data. It is known that DID designs are susceptible to serial correlation bias, and

one treatment for this matter is to convert the before/after periods into a singular

observation by averaging the multiple periods (Bertrand, Duflo, and Mullainathan,

2004). After averaging the before and after periods, we estimate the enhancement

update effect and find consistent results which support our main model findings (β =

0.052, p < 0.01).

Third, to ensure that our DID model is formulated properly with the appropriate

control covariates, and is capturing the enhancement update effect at the precise

treatment time, we conduct a placebo test. For this test, we falsely assume that the

enhancement update effect took place one day before the actual treatment period,

and estimate the DID effect with only the two before treatment periods. We find

insignificant enhancement update effects which supports the fact that our DID design

is not picking up spurious effects (β = 0.004, p > 0.1).

Fourth, we specify and estimate an alternative fixed effects model using app fixed

effects instead of update fixed effects to address potential concerns from Nickell bias
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(Nickell, 1981). If the time horizon is short, fixed effect transformations could increase

the correlation between autocorrelated variables and induce endogeneity bias to our

estimates. Therefore, we formulate an OLS model that controls for app level fixed

effects. Compared to the update fixed effects which are derived from a short five-day

panel, app level fixed effects are derived from a long time series as we have multiple

updates within each app. Estimation results show qualitatively consistent results and

support the robustness of our findings.

Fifth, we estimate the effect of enhancement updates on an alternative dependent

variable using survival analysis. Instead of the before/after change in daily downloads,

we estimate whether the frequency of content updates significantly increase the entire

life cycle of an app by reducing the hazard ratio. Since we cannot assume the effect

duration of each content update, we operationalize an independent variable that

counts the number of content updates that have been made at each lifecycle stage.

We then estimate the effect of update frequencies at the respective lifecycle stages,

and the effect of update regularity in a Cox Proportional Hazard model. Additionally,

we estimate parametric models that assume certain hazard probability distributions

with random effects to account for unobserved app heterogeneity. We fit the two

most commonly used distributions such as the exponential and Weibull distribution.

Findings show qualitatively consistent results as content updates focused in earlier

stages in the app life cycle (i.e., first and second stage) can significantly reduce the

hazard ratio, and increased variability in inter-update times may significantly increase

the hazard ratio. With our main model analysis, these results jointly suggest that

early stage content updates with regular schedules can enhance the performance and

also extend the life cycle of the mobile app.

Finally, we estimate the effect of enhancement updates at various lifecycle stages

using a five-stage life cycle stage specification. Here the five stages are defined as time

since launch till the initial peak in adoptions (stage one), the time between the initial
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peak till 75th percentile of the peak in daily downloads (stage two), 75th percentile till

50th percentile of the peak in daily downloads (stage three), 50th percentile till 25th

percentile in daily downloads (stage four), and 25th percentile till app termination

(stage five). Estimation results consistently support our main model findings that

content updates in the second stage have the most substantial positive impact on the

app’s performance, and which declines to a negative impact in later stages in the app

life cycle.

3.6 Discussion and Conclusions

To gain a better understanding of enhancement updates, we estimate its effect on

app performance measures such as daily downloads and longevity of the app. The

estimated effect shows that developers can increase the app’s daily downloads on an

average of 5.2%. Having an increase in daily downloads throughout the enhancement

update can lead to substantial increases in the app user base size in the long-term.

While the details of the changes implemented in each enhancement is not available

in our data, we assume that these changes are quite comparable between the en-

hancement updates within the app panel because developers are tightly constrained

by their resources and release schedules. Therefore, we believe the estimated update

effects are consistent across updates being made within an app. This estimate of

the enhancement can serve as important input parameters when developers or future

researchers attempt to develop optimized models that jointly consider the software

maintenance costs and the demand benefits.

From the estimations and findings in this study, we explore three contextual fac-

tors that may influence the effectiveness of the enhancement updates. Findings may

prove to be helpful to mobile app developers in further increasing the effectiveness of

the updates. The three factors are (1) update schedule regularity, (2) lifecycle stage,

and (3) market activity.
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3.6.1 Update Schedule Regularity

We estimated the benefits of keeping a regular update schedule from a mobile app

user perspective. While the benefits of keeping a regular maintenance schedule may

be more prominent on the supply-side in allocating resources and lowering costs, we

also find significant positive benefits from the demand-side. When updates are in-

troduced to users regularly, this can minimize the disruptions and frustrations from

service downtime. Regular updates can also signal the users that there will be another

update to expect in the next update cycle and create a sense of anticipation. Besides

direct marketing communications initiated by the developer (i.e., advertisements), an-

other important communication channel is the indirect user-generated content chan-

nel where users run individual broadcasts about the app (i.e., youtube, twitch, etc.).

These users require contents to show and tell their viewers to maintain the broadcast

channels and earn revenue from advertisements. A regular update schedule means

that these indirect channels also have less difficulty in finding additional content to

broadcast regularly. Because the estimated effect is relatively small compared to the

enhancement effect itself, small deviations from the regular schedule may not im-

pact the performance of the app much. However, for significant deviations, which

means that the updates are carried out on a more random and sporadic schedule, the

accumulated effects may not be negligible.

3.6.2 Lifecycle Stages

Based on our estimates of the enhancement update effects in the three life cycle

stages, we find that updates made in the second stage showed strongest impact,

followed by the first stage, with the third stage updates showing a negative impact.

When compared with the control group, the first stage enhancement updates do not

show significant changes in demand. This is because the first stage is when the app is

freshly launched into the market. Advertisements about the app are still around the
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core features and functions of the app, and users have yet to comprehend and consume

all the content that the app provides. The second stage takes place right after the app

has reached an initial peak in daily downloads, and the rate of user growth starts to

decline. From a Bass diffusion model perspective, the initial peak in adoption tells us

that the app has reached its full potential in reaching out to innovators in the market.

Innovators are users that decided to adopt the product without peer influences. This

segment of users may also serve as influencers that initiate indirect marketing channels

and promote apps that provided them with a satisfying experience. In this stage, the

core app content may show high rates of completion which means that the app gets

promoted and user awareness increases based on additional enhancement updates

because core features are no longer appealing to the remaining potential adopters in

the market.

One interesting finding is that the update effect becomes significantly negative as

the app reaches later stages in the life cycle. One possible explanation is that although

the content load and effort are comparable among the enhancement updates, it is

possible that the objectives behind the update may have changed in later stages of

the app’s life cycle. As the downloads and revenue trends show clear signs that the

app can no longer appeal to the users, developers may start introducing end-of-life

revenue extracting contents in the app which may further accelerate the decay of app

adoption. Such end-of-life milking strategies may evoke negative publicity towards

the app and deter potential users from downloading the app.

Through robustness checks that rely on a more granular split of the life cycle,

these main findings are consistently supported. We can see that the second stage in

a five-stage life cycle remains strongly significant, which means that the region that

significantly reinforces enhancement updates can be a very tight opportunity window.

Therefore, we suggest that publishers should keep a keen eye on the performance

trajectory of their apps and make good use of information that the life cycle signals.
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Because the moderation effect is relatively larger than the regularity effect, it would

make sense for developers to even go out of their regular schedules and focus their

maintenance efforts on particular life cycle stages.

3.6.3 Market Activity

The interaction between market activity and enhancement update shows how the

effectiveness of enhancement updates change at various market activity levels. The

market activity variable captures the general interest of the population towards mobile

apps. There may exist predictable spikes in market activity, especially around holiday

seasons. Reports show that smart phones and tablets have higher usage rates on

weekdays and summer seasons compared to weekends and winter seasons (Waber,

2014). Holidays can also be an important factor, as many publishers increase their

ad spending during the holiday periods with eager users installing gaming apps on

their new devices received as holiday gifts (Liftoff, 2017). To take advantage of these

seasonal demands, many apps introduce holiday-specific events and enhancement

updates. For example, a popular farming game “Hay Day” changes the entire theme

and background of the app during Christmas every year. The developer changes the

background music and adds limited holiday merchandise in the store for users to

purchase.

The digital marketplace for mobile apps provides various advantages to the play-

ers in the market. One of those advantages is that firms can extract information

about the market structure and monitor their competitors for benchmarking. For

this reason, currently, there are many market intelligence firms that provide infor-

mation and consulting services for app developers. Releasing enhancement updates

close to high market activity levels would require developers to acquire additional

information about the market, and use that information to plan their enhancement

update schedules.
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3.6.4 Conclusion and Future Research

In this study, we estimate the effect of enhancement update on freemium mobile app

download performance and longevity. Additionally, via exploring the moderation

effects of update schedule regularity, life cycle stage, and market activity, we show

the feasibility of three update strategies.

In interpreting the findings, we acknowledge some limitations. First, the Bass

model predictions were obtained using the entire time series of an app. A more rig-

orous approach would be using only data points preceding the time of update and

incorporating a temporal gap between the estimation window and the prediction win-

dow. Applying this procedure would drastically reduce our sample because updates

with few estimation data points would fail to converge. This reduction in sample

size would occur for mostly updates occurring early in the app’s life cycle, and would

introduce a sample selection bias. We believe our procedure may have generated

an upward biased prediction and led to conservative estimates of the enhancement

updates. Therefore, in practice, enhancement updates may exhibit larger effects on

the app’s performance. Second, our sample is limited in terms of app category. How-

ever, as previously mentioned, the gaming category is the leading category in terms

of revenue generation and technology implementation. Third, while software main-

tenance is a general task required for all software products, our focus is on mobile

apps which relies on the freemium business model. However, the software industry

is transitioning to a Software as a Service (SaaS) model which entails other similar

revenue generation models such as subscription services and free trials. Therefore,

we believe that the applicability of findings from the mobile app context will slowly

expand to the software industry over time.

Future research can explore interactions between enhancement update strategies

and pricing models for software. This includes in-app purchasing option pricing and

other types of software that relies on subscription and physical distribution that
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involves pricing decisions. Also, future research can analyze the content of each

enhancement update in detail and identify how enhancement updates evolve over the

app’s lifetime. This can help us understand why specific enhancement updates can

lead to adverse outcomes. Finally, future research can investigate the link between

enhancement updates and a developer’s advertising behavior. This study assumes

that the two activities are closely tied, but in practice, there may be cases where the

two activities show discrepancies.
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Chapter 4

Conclusion

4.1 Introduction

This chapter covers the discussion of the study’s results, and expands on its contri-

bution to research and practice. We then present opportunities for future research

and conclusions.

4.2 Discussion

This dissertation aimed to understand the interactions between the market, developer,

and users surrounding the mobile app industry. Through the studies in Chapter 2

and 3, we identified success strategies for mobile app developers during mobile app

development/deployment and operations phase in the software development lifecycle.

Specifically, we answered the following research questions.

• What is the impact of feature design on the early stage user base expansion of

a mobile app?

• How does the launch timing of the app affect the customers’ perceptions toward

app feature design?

• Why are some enhancement updates more effective than others?

• How should mobile app developers schedule their enhancement updates?

Results from our study show that when designing mobile apps, offering a focused

rich feature set is better than offering a diverse set of features. Specifically, seasonal
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users prefer relatively simple apps. Therefore, feature rich and diverse apps may

not see much benefits from a market activity-based launch timing strategy. We also

estimate the effect of enhancement updates after the app is launched. We find that

the enhancement update effect is dependent on the update schedule regularity, life

cycle stage, and market activity levels at the time of the update.

4.3 Contributions

4.3.1 Theoretical Implications

Our studies make several theoretical contributions to research streams in product

complexity, market seasonality, and software maintenance. First, we estimate the

effect of complex product feature designs from a downstream user perspective. Rather

than focusing on how complexity imposes product development challenges, we assess

whether the choice of adding more layers of complexity to the product is rewarded

by the users. Even if complexity adds challenges to the development process, it may

be inevitable if users prefer richer and more diverse experience. To do this, we adopt

a demand-side performance metric of initial peak magnitude in daily active users,

number of downloads, and cumulative downloads. This demand-side assessment is

especially important because freemium mobile apps largely rely on network effects and

user content generation. We find that feature set composition significantly influences

the early stage user base expansion of an app.

Second, we identify product feature richness and diversity as a critical non-price

competition factor in the context of mobile applications. While price is often a

critical product and market indicator that drives economic theories, factors that are

identified in this study provide valuable insight for explaining performance outcome

of product systems when they are competing on non-price factors. Optimizing the

feature set is especially important in our context as the extremely short product life

cycle do not allow firms to experiment and study market reactions after the product
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is launched. Therefore, we contribute to the research stream in mobile apps by

assessing mobile app performance at the feature-level, which becomes more relevant

as freemium emerges as the dominant business model.

Third, we find asymmetric effects of the different dimensions of complexity, which

helps us establish the conceptual differences between the dimensions. Prior litera-

ture on the demand side assessment of product complexity (Kim and Hyun, 2011;

Mikolon et al., 2015; Thompson, Hamilton, and Rust, 2005) mostly view complexity

as a unidimensional construct or hypothesize a unified direction of multiple dimen-

sions of complexity, while failing to delineate the differences between each complexity

dimension. We conceptualize the two complexity dimensions as feature richness and

diversity, and estimate their relative impact on the apps’ performance. Findings

from this study support a positive effect of complexity when components cohesively

contribute to a certain feature, thereby adding richness. On the other hand, when

components are scattered across a variety of feature categories, the complexity neg-

atively affects the app’s performance.

Fourth, we show how feature complexity of a product interacts with market sea-

sonality. Specifically, we find that apps with less feature richness and diversity benefit

more from a peak season launch. This finding helps us explain the heterogeneous per-

formance outcomes of mobile apps competing during peak demand seasons. Research

in economics that examines business cycles and marketing literature that examines

demand seasonality have endorsed the idea of optimizing market entry timing strate-

gies based on demand patterns. In contrast to the naive belief that more market

potential is always good, we argue that it is important to examine the demand sea-

sonality and product feature interactions. In contrast to our initial reasoning that the

effect of feature richness and diversity would be more salient to the seasonal users,

we find that the complexity of features reduces the attractiveness of the app to the

seasonal customers. The additional inflow of users during peak seasons represent a
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type of users who are somewhat constrained by resources or attention spans such that

product adoption occurs mostly during a specific time of year. Therefore, seasonality

in demand itself can occur for a specific type of consumer segment, which in turn

requires the app to be exceptionally easy to understand and use. These users do not

reward the developers for richer and more diverse features. The negativity in learning

cost resulting from feature complexity dominates in these user segments, and sim-

pler apps benefit from the seasonality based-timing. This study provides insight into

an Operations-Marketing interface issue by demonstrating a significant interaction

between market demand patterns and product features.

Fifth, through two post-hoc analyses, we dive deeper into the underlying mech-

anisms of the negative impact of feature diversity. We show that app developers

accumulate knowledge from prior launch experience such that they can make better

decisions on SDK selection and optimize the benefits. Interestingly, by observing

the interaction plots, we find that the market penalizes firms with reputation and

experience if they launch low richness and low diversity apps. An explanation for

this finding is that the experience variable is also capturing the firm reputation in

the market. Results show that as a firm grows their reputation, possibly users in the

market may expect more diverse experience and richer features in the newly launched

apps. A firm that does not innovate and still maintains the low richness and low di-

versity may eventually suffer from reduced performance. In sum, the results suggest

two things. First, publishers indeed learn over time from prior development and

launch experiences and make better decisions regarding SDK implementations. From

a broader picture, this shows that while managing complexity is a challenge for pub-

lishers, they improve their decision-making regarding product complexity from prior

experience and excel over time. Second, there is a market pull for constant technology

adoption and innovation regarding app features, whereby a firm that does not offer

novel features in their newly launched apps may quickly lose its place in the market.
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We also find that the negative impact of feature diversity comes mostly from mone-

tization features, which shows the trade-off relationship between user experience and

publisher revenue sources. Carefully balancing the two opposing forces poses difficult

challenges for developers in this business.

Finally, to gain a better understanding of enhancement updates, we estimate its ef-

fect on app performance measures such as daily downloads and longevity of the app.

This estimate of the enhancement can serve as important input parameters when

developers or future researchers attempt to develop optimized models that jointly

consider the software maintenance costs and the demand benefits. The tests regard-

ing the contextual variables helps us understand how the effectiveness enhancement

updates change under varying conditions. Specifically, we show that update sched-

ule regularity, lifecycle stage of the release, and market activity levels at the time of

release to have significant moderating effect on enhancement updates. While prior

literature dominantly discusses software maintenance as a reactive cost minimizing

task, we suggest a perspective that proactively uses software maintenance as a source

of competitive advantage.

4.3.2 Managerial Implications

Practitioners can benefit from the findings of this study in a number of ways. First, we

have addressed a critical managerial decision in the context of mobile app development

with regard to SDK choice. Now that the number of SDKs available in the market is

growing exponentially, picking and choosing the right SDKs and the resulting feature

set is becoming an essential problem for app developers. Our findings suggest that

it is crucial to consider SDK choice from a perspective of adding more richness or

diversity to the app’s features. It is vital for managers to know that a diverse feature

set that lacks richness can backfire and lead to reduced performance.

Second, the significant interaction between market activity, feature richness and

100



feature diversity suggest that managers should be careful in assuming that the mar-

ket segment is homogenous between the peak and off-peak season. If there is a cost

to postponing product launch after development completion to potentially take ad-

vantage of launching in the peak-season, this wait may not be justified, especially

if the app is complex. On the other hand, apps with relatively simpler features

and a straightforward value proposition can benefit more from a well-timed product

launch. Fourth, the results suggest that publishers should be cautious in expanding

the feature diversity of apps. It is advisable that the feature expansion takes place

after accumulating several product launch experiences. Prior product launch and

managing experience allows the developer to accumulate knowledge about the user

preference and behaviors, which can be valuable in optimizing new feature category

experience. Finally, developers should be aware of the trade-off relationships between

adding features that enhance user experience versus those focused on monetization.

Although these features may be tempting, a careful balance between the two will be

essential for sustaining a healthy app service.

Third, we provide estimates on the effectiveness of three types of update strategies.

Specifically, we propose three enhancement update strategies that may prove to be

helpful to mobile app developers in further increasing the effectiveness of the updates.

The three strategies are (1) regularity-based software maintenance, (2) lifecycle-based

software maintenance, and (3) market activity-based software maintenance. While

the benefits of keeping a regular maintenance schedule may be more prominent on

the supply-side in allocating resources and lowering costs, we also find significant pos-

itive benefits from the demand-side. When updates are introduced to users regularly,

this can minimize the disruptions and frustrations from service downtime. Regular

updates can also signal the users that there will be another update to expect in the

next update cycle and create a sense of anticipation. Based on our estimates of the

enhancement update effects in the three life cycle stages, we find that updates made
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in the second stage showed strongest impacts, followed by the first stage, and third

stage updates showing a negative impact. Through robustness checks that rely on a

more granular split of the life cycle, these main findings are consistently supported.

We can see that the second stage in a five-stage life cycle remains strongly significant,

which means that the region that significantly reinforces enhancement updates can

be a very tight opportunity window. Therefore, we suggest that publishers should

keep a keen eye on the performance trajectory of their apps and make good use of

information that the life cycle signals. Because the moderation effect is relatively

larger than the regularity effect, it would make sense for developers to even go out

of their regular schedules and focus their maintenance efforts on particular life cycle

stages. The interaction between market activity and enhancement update tests the

feasibility of a market activity-based update strategy. One way to take advantage

of market activity is by attending to predictable seasonal demands. Many apps in-

troduce holiday-specific events and enhancement updates. For example, a popular

farming game, Hay Day, changes the entire theme and background of the app during

Christmas every year. The developer changes the background music and adds lim-

ited holiday merchandise in the store for users to purchase. The digital marketplace

for mobile apps provides various advantages to the players in the market. One of

those advantages is that firms can extract information about the market structure

and monitor their competitors for benchmarking. For this reason, currently there are

many market intelligence firms that provide information and consulting services for

app developers. The market activity-based maintenance strategy would require de-

velopers to acquire additional information about the market and use that information

to plan their enhancement update schedules.
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4.4 Limitations

In interpreting the findings, we acknowledge some limitations. First, the scope of the

study pertains to iOS gaming apps only. This reduction in scope allowed us to reduce

concerns related to unobserved influences from mobile device characteristics and user

demographics. However, we believe that the gaming context is an extreme case

regarding competition intensity and short innovation cycles, which the mobile app

economy generally shares in differing degrees. Therefore, our findings on complexity

and market activity should apply to other app categories as well that use modularized

software development kits.

Second, we do not have a more detailed performance measure that captures the

actual usage of the app. The actual duration of use would be ideal to capture user

engagement with the mobile app.

Third, the Bass model predictions were obtained using the entire time series of

an app. A more rigorous approach would be using data points preceding the time

of update and incorporating a temporal gap between the estimation window and the

prediction window. Applying this procedure would drastically reduce our sample

because updates with few estimation data points would fail to converge. This re-

duction in sample size would happen mostly for updates occurring early in the app’s

life cycle, and would introduce a sample selection bias. We believe our procedure

may have generated an upward biased prediction and led to conservative estimates of

the enhancement updates. Therefore, in practice, enhancement updates may exhibit

larger effects on the app’s performance.

Fourth, while software maintenance is a general task required for all software

products, our focus is on mobile apps which relies on the freemium business model.

This may limit the generalizability of our findings. However, the software industry

is transitioning to a Software as a Service (SaaS) model which entails other similar

revenue generation models such as subscription services and free trials. Therefore,
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we believe that the applicability of findings from the mobile app context will expand

to the software industry slowly over time.

4.5 Recommendation for Future Work

This research opens up new avenues for future research. Future research can look into

user-level behavior data to strengthen the link between app features and performance

outcomes. The user-level behavior includes in-app purchasing behavior and in-app

content generation behavior. Moreover, future research can explore interactions be-

tween enhancement update strategies and pricing models for software. This includes

in-app purchasing option pricing and other types of software that relies on subscrip-

tion and physical distribution that involves pricing decisions. Also, future research

can analyze the content of each enhancement update in detail and identify how en-

hancement updates evolve over the app’s lifetime. This can help us understand why

specific enhancement updates can lead to adverse outcomes. Finally, future research

can investigate the link between enhancement updates and a developer’s advertising

behavior. This study assumes that the two activities are closely tied, but in practice,

there may be cases where the two activities show discrepancies.

4.6 Conclusions

Overall, this study sheds light on both theory and practice on the emerging trend in

mobile app ecosystems. Our conceptualization focusing on the differences of mobile

app lifecycles opens novel research avenues yet to be explored. Asymmetric effects

of the feature complexity dimensions and their interactions with demand patterns

are the primary findings of this study. We also estimate the effect of enhancement

updates on freemium mobile app download performance and longevity. Additionally,

via exploring the moderation effects of update schedule regularity, life cycle stage,

and market activity, we show the feasibility of three update strategies. In sum, we
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believe finding from our study help mobile app developers in formulating effective

app development, deployment, and updating strategies. Innovations in the mobile

app industry have the potential to change the way we do things for the better and

can touch upon lives where traditional businesses failed to do so.

105



Bibliography

[1] Ritu Agarwal and Elena Karahanna. “Time flies when you’re having fun:

Cognitive absorption and beliefs about information technology usage”. In:

MIS quarterly (2000), pp. 665–694. issn: 0276-7783.

[2] Carl R Anderson and Carl P Zeithaml. “Stage of the product life cycle,

business strategy, and business performance”. In: Academy of Management

journal 27.1 (1984), pp. 5–24.

[3] Appsee. The ultimate SDK guide for mobile apps. Appsee, 2018, pp. 1–44.

[4] Ashish Arora, Jonathan P Caulkins, and Rahul Telang. “Research note—Sell

first, fix later: Impact of patching on software quality”. In: Management

Science 52.3 (2006), pp. 465–471.

[5] Kankanhalli Atreyi, Jonathan Hua Ye, and Hock Hai Teo. “Comparing

potential and actual innovators: an empirical study of mobile data service

innovation”. In: MIS Quarterly 39.3 (2015), pp. 667–682. doi:

10.25300/MISQ/2015/39.3.07.

[6] Terrence August, Duy Dao, and Hyoduk Shin. “Optimal Timing of

Sequential Distribution: The Impact of Congestion Externalities and

Day-and-Date Strategies”. In: Marketing Science 34.5 (2015), pp. 755–774.

issn: 0732-2399. doi: 10.1287/mksc.2015.0936. url:

http://pubsonline.informs.org/doi/10.1287/mksc.2015.0936.

[7] David H. Autor. “Outsourcing at Will: The Contribution of Unjust Dismissal

Doctrine to the Growth of Employment Outsourcing”. In: Journal of Labor

Economics 21.1 (2003), pp. 1–42.

106



[8] Kostas Axarloglou. “The cyclicality of new product introductions”. In: The

Journal of Business 76.1 (2003), pp. 29–48. issn: 0021-9398.

[9] Carliss Young Baldwin and Kim B Clark. Design rules: The power of

modularity. Vol. 1. MIT press, 2000.

[10] Rajiv D Banker, Gordon B Davis, and Sandra A Slaughter. “Software

development practices, software complexity, and software maintenance

performance: A field study”. In: Management science 44.4 (1998),

pp. 433–450. issn: 0025-1909.

[11] Rajiv D Banker and Sandra A Slaughter. “A field study of scale economies in

software maintenance”. In: Management science 43.12 (1997), pp. 1709–1725.

[12] Frank M Bass. “A new product growth for model consumer durables”. In:

Management science 15.5 (1969), pp. 215–227.

[13] Ornella Benedettini and Andy Neely. “Complexity in services: an

interpretative framework”. In: 23rd Annual Conference of the Production and

Operations Management Society (POMS). 2012, pp. 1–11.

[14] Keith H Bennett and Vaclav T Rajlich. “Software maintenance and

evolution: a roadmap”. In: Proceedings of the Conference on the Future of

Software Engineering. ACM. 2000, pp. 73–87.

[15] Steven Berry and Panle Jia. “Tracing the woes: An empirical analysis of the

airline industry”. In: American Economic Journal: Microeconomics 2.3

(2010), pp. 1–43. issn: 1945-7669.

[16] Steven Berry, James Levinsohn, and Ariel Pakes. “Automobile prices in

market equilibrium”. In: Econometrica: Journal of the Econometric Society

(1995), pp. 841–890. issn: 0012-9682.

107



[17] Marianne Bertrand, Esther Duflo, and Sendhil Mullainathan. “How much

should we trust differences-in-differences estimates?” In: The Quarterly

journal of economics 119.1 (2004), pp. 249–275.

[18] Chris Brauer. The App Attention Span. 2014. url:

https://www.appdynamics.com/media/uploaded-files/1425406960/app-

attention-span-research-report-1.pdf (visited on 05/07/2018).

[19] Christina L Brown and Gregory S Carpenter. “Why is the trivial important?

A reasons-based account for the effects of trivial attributes on choice”. In:

Journal of Consumer Research 26.4 (2000), pp. 372–385. issn: 1537-5277.

[20] Shona L Brown and Kathleen M Eisenhardt. “The art of continuous change:

Linking complexity theory and time-paced evolution in relentlessly shifting

organizations”. In: Administrative science quarterly (1997), pp. 1–34.

[21] Tom J Brown et al. “Spreading the word: Investigating antecedents of

consumers’ positive word-of-mouth intentions and behaviors in a retailing

context”. In: Journal of the Academy of Marketing Science 33.2 (2005),

pp. 123–138. issn: 0092-0703.

[22] Maurice J. G. Bun and Teresa D. Harrison. “OLS and IV estimation of

regression models including endogenous interaction terms”. In: Econometric

Reviews (Jan. 2018), pp. 1–14. issn: 0747-4938. doi:

10.1080/07474938.2018.1427486. url: https:

//www.tandfonline.com/doi/full/10.1080/07474938.2018.1427486.

[23] Roger J. Calantone et al. “The Effects of Competition in Short Product

Life-Cycle Markets: The Case of Motion Pictures”. In: Journal of Product

Innovation Management 27.3 (May 2010), pp. 349–361. issn: 07376782. doi:

10.1111/j.1540-5885.2010.00721.x. url:

http://doi.wiley.com/10.1111/j.1540-5885.2010.00721.x.

108



[24] Gregory S Carpenter, Rashi Glazer, and Kent Nakamoto. “Meaningful

brands from meaningless differentiation: The dependence on irrelevant

attributes”. In: Journal of Marketing Research (1994), pp. 339–350. issn:

0022-2437.

[25] Ned Chapin et al. “Types of software evolution and software maintenance”.

In: Journal of software maintenance and evolution: Research and Practice

13.1 (2001), pp. 3–30.

[26] Sam Cheney. The Data Behind 10 Years of the iOS App Store. 2018. url:

https://www.appannie.com/en/insights/market-data/data-behind-

10-years-ios-app-store/ (visited on 05/07/2018).

[27] Judith A Chevalier and Dina Mayzlin. “The effect of word of mouth on sales:

Online book reviews”. In: Journal of marketing research 43.3 (2006),

pp. 345–354. issn: 0022-2437.

[28] Lawrence J Christiano and Terry J Fitzgerald. “The band pass filter”. In:

international economic review 44.2 (2003), pp. 435–465. issn: 0020-6598.

[29] David J Closs, Gilbert N Nyaga, and M Douglas Voss. “The differential

impact of product complexity, inventory level, and configuration capacity on

unit and order fill rate performance”. In: Journal of Operations Management

28.1 (2010), pp. 47–57. issn: 0272-6963.

[30] Clutch. Top Mobile App Development Companies. 2018. url:

https://clutch.co/directory/mobile-application-developers (visited

on 11/15/2018).

[31] Robert G Cooper and Elko J Kleinschmidt. “New products: what separates

winners from losers?” In: Journal of Product Innovation Management: AN

INTERNATIONAL PUBLICATION OF THE PRODUCT

109



DEVELOPMENT & MANAGEMENT ASSOCIATION 4.3 (1987),

pp. 169–184. issn: 0737-6782.

[32] Mihaly Csikszentmihalyi. Flow: The psychology of optimal performance. 1990.

[33] Isabelle Dalmasso et al. “Survey, comparison and evaluation of cross

platform mobile application development tools”. In: Wireless

Communications and Mobile Computing Conference (IWCMC), 2013 9th

International. IEEE, 2013, pp. 323–328. isbn: 1467324809.

[34] Diya Datta and Sangaralingam Kajanan. “Do app launch times impact their

subsequent commercial success? an analytical approach”. In: 2013

International Conference on Cloud Computing and Big Data

(CloudCom-Asia). IEEE, 2013, pp. 205–210. isbn: 1479928305.

[35] Richard A D’aveni. Hypercompetition. Simon and Schuster, 2010.

[36] Artyom Dogtiev. How Much Does App Development Cost? 2018. url:

http://www.businessofapps.com/guide/app-development-cost/ (visited

on 07/20/2018).

[37] Larry Downes and Paul Nunes. Big bang disruption: Strategy in the age of

devastating innovation. Penguin, 2014. isbn: 1591846900.

[38] Wenjing Duan, Bin Gu, and Andrew B Whinston. “The dynamics of online

word-of-mouth and product sales—An empirical investigation of the movie

industry”. In: Journal of retailing 84.2 (2008), pp. 233–242. issn: 0022-4359.

[39] J Alberto Espinosa et al. “Familiarity, complexity, and team performance in

geographically distributed software development”. In: Organization science

18.4 (2007), pp. 613–630. issn: 1047-7039.

110



[40] Wai Fong Boh, Sandra A. Slaughter, and J. Alberto Espinosa. “Learning

from Experience in Software Development: A Multilevel Analysis”. In:

Management Science 53.8 (2007), pp. 1315–1331. issn: 0025-1909. doi:

10.1287/mnsc.1060.0687. url:

http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1060.0687.

[41] Rajiv Garg and Rahul Telang. “Inferring App Demand from Publicly

Available Data”. In: MIS Quarterly 37.4 (2013), pp. 1253–1264. issn:

0276-7783. doi: 10.25300/MISQ/2013/37.4.12.

[42] Sachin Garg et al. “Analysis of preventive maintenance in transactions based

software systems”. In: IEEE transactions on Computers 47.1 (1998),

pp. 96–107.

[43] Anindya Ghose and Sang Han. “Estimating demand for mobile applications

in the new economy”. In: Management Science 60.6 (2014), pp. 1470–1488.

issn: 00251909. doi: 10.1287/mnsc.2014.1945. url:

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84902252476%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=.

[44] David Godes and Dina Mayzlin. “Using Online Conversations to Study

Word-of-Mouth Communication”. In: Marketing Science 23.4 (Nov. 2004),

pp. 545–560. issn: 0732-2399. doi: 10.1287/mksc.1040.0071. url:

http://pubsonline.informs.org/doi/abs/10.1287/mksc.1040.0071.

[45] Bilal Gokpinar, Wallace J Hopp, and Seyed M R Iravani. “The impact of

misalignment of organizational structure and product architecture on quality

in complex product development”. In: Management science 56.3 (2010),

pp. 468–484. issn: 0025-1909.

[46] Mary Ellen Gordon. Benchmarking the Half-Life and Decay of Mobile Apps.

2018. url:

111



http://flurrymobile.tumblr.com/post/115191376315/bench-smarking-

the-half-life-and-decay-of-mobile (visited on 07/15/2018).

[47] Des Greer and Guenther Ruhe. “Software release planning: an evolutionary

and iterative approach”. In: Information and software technology 46.4 (2004),

pp. 243–253.

[48] Abbie Griffin. “The effect of project and process characteristics on product

development cycle time”. In: Journal of Marketing Research (1997),

pp. 24–35. issn: 0022-2437.

[49] Term L Griffith. “Technology features as triggers for sensemaking”. In:

Academy of Management review 24.3 (1999), pp. 472–488. issn: 0363-7425.

[50] Sven Grundberg. Angry Birds Space Hits 10 Million Downloads. Mar. 2012.

url: https://on.wsj.com/1BDGX0b.

[51] Lars Peter Hansen. “Large sample properties of generalized method of

moments estimators”. In: Econometrica: Journal of the Econometric Society

(1982), pp. 1029–1054. issn: 0012-9682.

[52] Zellig S Harris. “Distributional structure”. In: Word 10.2-3 (1954),

pp. 146–162.

[53] Kevin B Hendricks and Vinod R Singhal. “Association between supply chain

glitches and operating performance”. In: Management science 51.5 (2005),

pp. 695–711.

[54] Teck-Hua Ho, Sergei Savin, and Christian Terwiesch. “Managing demand

and sales dynamics in new product diffusion under supply constraint”. In:

Management Science 48.2 (2002), pp. 187–206. issn: 0025-1909.

[55] Robert J Hodrick and Edward C Prescott. “Postwar US business cycles: an

empirical investigation”. In: Journal of Money, credit, and Banking (1997),

pp. 1–16. issn: 0022-2879.

112



[56] Charles W Hofer. “Toward a Contingency Theory of Business Strategy”. In:

Academy of Management Journal 18.4 (1975), pp. 784–810.

[57] James G Hutton. “A study of brand equity in an organizational-buying

context”. In: Journal of Product & Brand Management 6.6 (1997),

pp. 428–439. issn: 1061-0421.

[58] Guido W Imbens and Donald B Rubin. “Rubin causal model”. In: The new

palgrave dictionary of economics (2017), pp. 1–10.

[59] Mark A Jacobs and Morgan Swink. “Product portfolio architectural

complexity and operational performance: Incorporating the roles of learning

and fixed assets”. In: Journal of Operations Management 29.7-8 (2011),

pp. 677–691. issn: 0272-6963.

[60] Charlene Jennett et al. “Measuring and defining the experience of immersion

in games”. In: International journal of human-computer studies 66.9 (2008),

pp. 641–661. issn: 1071-5819.

[61] Yonghua Ji et al. “Optimal enhancement and lifetime of software systems: A

control theoretic analysis”. In: Production and Operations Management 20.6

(2011), pp. 889–904.

[62] Patrik Jonsson. “Towards an holistic understanding of disruptions in

Operations Management”. In: Journal of operations management 18.6

(2000), pp. 701–718.

[63] Timo Kaski and Jussi Heikkila. “Measuring product structures to improve

demand-supply chain efficiency”. In: International Journal of Technology

Management 23.6 (2002), pp. 578–598. issn: 0267-5730.

[64] Stuart A Kauffman and Edward D Weinberger. “The NK model of rugged

fitness landscapes and its application to maturation of the immune response”.

In: Journal of theoretical biology 141.2 (1989), pp. 211–245. issn: 0022-5193.

113



[65] Ji-Hern Kim and Yong J Hyun. “A model to investigate the influence of

marketing-mix efforts and corporate image on brand equity in the IT

software sector”. In: Industrial marketing management 40.3 (2011),

pp. 424–438. issn: 0019-8501.

[66] Barbara A Kitchenham et al. “Towards an ontology of software

maintenance”. In: Journal of Software Maintenance: Research and Practice

11.6 (1999), pp. 365–389.

[67] Frank Kleibergen and Richard Paap. “Generalized reduced rank tests using

the singular value decomposition”. In: Journal of econometrics 133.1 (2006),

pp. 97–126. issn: 0304-4076.

[68] Lee J Krajewski, Larry P Ritzman, and Manoj K Malhotra. Operations

Management: Processes and Supply Chains. Pearson, 2018.

[69] Melanie E Kreye, Jens K Roehrich, and Michael A Lewis. “Servitising

manufacturers: the impact of service complexity and contractual and

relational capabilities”. In: Production Planning & Control 26.14-15 (2015),

pp. 1233–1246. issn: 0953-7287.

[70] Robert E Krider and Charles B Weinberg. “Competitive dynamics and the

introduction of new products: The motion picture timing game”. In: Journal

of Marketing Research (1998), pp. 1–15. issn: 0022-2437.

[71] Mayuram S Krishnan, Tridas Mukhopadhyay, and Charles H Kriebel. “A

decision model for software maintenance”. In: Information Systems Research

15.4 (2004), pp. 396–412.

[72] Vidyadhar G Kulkarni et al. “Optimal allocation of effort to software

maintenance: A queuing theory approach”. In: Production and Operations

Management 18.5 (2009), pp. 506–515.

114



[73] Gunwoong Lee and T. S. Raghu. “Determinants of Mobile Apps’ Success:

Evidence from the App Store Market”. In: Journal of Management

Information Systems 31.2 (2014), pp. 133–170. issn: 0742-1222. doi:

10.2753/MIS0742-1222310206. arXiv: arXiv:1011.1669v3. url:

http://www.tandfonline.com/doi/full/10.2753/MIS0742-1222310206.

[74] Arthur Lewbel. “Using heteroscedasticity to identify and estimate

mismeasured and endogenous regressor models”. In: Journal of Business &

Economic Statistics 30.1 (Jan. 2012), pp. 67–80. issn: 0735-0015. doi:

10.1080/07350015.2012.643126. url: https:

//www.tandfonline.com/doi/full/10.1080/07350015.2012.643126.

[75] Bennet P Lientz, E. Burton Swanson, and Gail E Tompkins. “Characteristics

of application software maintenance”. In: Communications of the ACM 21.6

(1978), pp. 466–471.

[76] Liftoff. Mobile Gaming Apps Report: User acquisition trends and benchmark.

Liftoff, 2017, pp. 1–20.

[77] Omer Liss. The Hidden Seasonality of Social Gaming. 2017. url:

https://www.optimove.com/blog/hidden-seasonality-social-gaming

(visited on 11/12/2018).

[78] Charles Zhechao Liu, Yoris A. Au, and Hoon Seok Choi. “Effects of

Freemium Strategy in the Mobile App Market: An Empirical Study of Google

Play”. In: Journal of Management Information Systems 31.3 (July 2014),

pp. 326–354. issn: 1557928X. doi: 10.1080/07421222.2014.995564. url:

http://www.tandfonline.com/doi/abs/10.1080/07421222.2014.995564.

[79] Amit Mehra, Abraham Seidmann, and Probal Mojumder. “Product life-cycle

management of packaged software”. In: Production and Operations

Management 23.3 (2014), pp. 366–378.

115



[80] Marc H Meyer and Kathleen Foley Curley. “An applied framework for

classifying the complexity of knowledge-based systems”. In: Mis Quarterly

(1991), pp. 455–472. issn: 0276-7783.

[81] Sven Mikolon et al. “The complex role of complexity: how service providers

can mitigate negative effects of perceived service complexity when selling

professional services”. In: Journal of Service Research 18.4 (2015),

pp. 513–528. issn: 1094-6705.

[82] Tyler Moore. What’s the Cost to Maintain an App? 2019. url: https:

//www.app-press.com/blog/whats-the-cost-to-maintain-an-app

(visited on 03/29/2019).

[83] Anirban Mukherjee and Vrinda Kadiyali. “Modeling multichannel home

video demand in the US motion picture industry”. In: Journal of Marketing

Research 48.6 (2011), pp. 985–995. issn: 0022-2437.

[84] Sriram Narayanan, Sridhar Balasubramanian, and

Jayashankar M. Swaminathan. “A Matter of Balance: Specialization, Task

Variety, and Individual Learning in a Software Maintenance Environment”.

In: Management Science 55.11 (2009), pp. 1861–1876. issn: 0025-1909. doi:

10.1287/mnsc.1090.1057. url:

http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1090.1057.

[85] Phillip Nelson. “Information and consumer behavior”. In: Journal of political

economy 78.2 (1970), pp. 311–329. issn: 0022-3808.

[86] Newzoo. Newzoo Global App Store Intelligence Q4 2016. 2016. url:

https://newzoo.com/insights/articles/global-mobile-market-

report-app-market-to-gross-44-8bn-this-year/ (visited on

06/20/2018).

116



[87] Stephen Nickell. “Biases in dynamic models with fixed effects”. In:

Econometrica 49.6 (1981), pp. 1417–1426. issn: 0012-9682.

[88] Jakob Nielsen. Usability engineering. Elsevier, 1994. isbn: 0080520294.

[89] John A Norton and Frank M Bass. “A diffusion theory model of adoption

and substitution for successive generations of high-technology products”. In:

Management science 33.9 (1987), pp. 1069–1086.

[90] John T Nosek and Prashant Palvia. “Software maintenance management:

changes in the last decade”. In: Journal of Software Maintenance: Research

and Practice 2.3 (1990), pp. 157–174.

[91] Sharon Novak and Steven D Eppinger. “Sourcing by design: Product

complexity and the supply chain”. In: Management science 47.1 (2001),

pp. 189–204. issn: 0025-1909.

[92] Stephen M Nowlis and Itamar Simonson. “The effect of new product features

on brand choice”. In: Journal of marketing research (1996), pp. 36–46. issn:

0022-2437.

[93] Adrian Rodney Pagan and Anthony David Hall. “Diagnostic tests as residual

analysis”. In: Econometric Reviews 2.2 (1983), pp. 159–218. issn: 0747-4938.

[94] Riley Panko. How Small Businesses Build Mobile Apps. 2018. url:

https://themanifest.com/app-development/how-small-businesses-

build-mobile-apps (visited on 11/12/2018).

[95] Sarah Perez. Paid Apps On The Decline: 90% Of iOS Apps Are Free, Up

From 80-84% During 2010-2012, Says Flurry. 2013. url: https:

//techcrunch.com/2013/07/18/paid-apps-on-the-decline-90-of-ios-

apps-are-free-up-from-80-84-during-2010-2012-says-flurry/

(visited on 01/15/2018).

117



[96] Sergio Picazo-Vela et al. “Why provide an online review? An extended

theory of planned behavior and the role of Big-Five personality traits”. In:

Computers in Human Behavior 26.4 (2010), pp. 685–696. issn: 0747-5632.

[97] Sonja Radas and Steven M Shugan. “Seasonal marketing and timing new

product introductions”. In: Journal of Marketing Research (1998),

pp. 296–315. issn: 0022-2437.

[98] Karthik Ramachandran and Vish Krishnan. “Design architecture and

introduction timing for rapidly improving industrial products”. In:

Manufacturing & Service Operations Management 10.1 (2008), pp. 149–171.

issn: 1523-4614.

[99] Morten O Ravn and Harald Uhlig. “On adjusting the Hodrick-Prescott filter

for the frequency of observations”. In: Review of economics and statistics

84.2 (2002), pp. 371–376. issn: 0034-6535.

[100] Marco C Rozendaal et al. “Game feature and expertise effects on experienced

richness, control and engagement in game play”. In: AI & society 24.2

(2009), pp. 123–133. issn: 0951-5666.

[101] SafeDK. Mobile SDKs Data Trends in the Android Market. Tech. rep.

SafeDK, 2018, pp. 1–33.

[102] Ivo Salmre. Writing mobile code: Essential software engineering for building

mobile applications. Addison-Wesley Professional, 2005.

[103] Sergei Savin and Christian Terwiesch. “Optimal product launch times in a

duopoly: Balancing life-cycle revenues with product cost”. In: Operations

Research 53.1 (2005), pp. 26–47. issn: 0030-364X.

[104] Richard Schmalensee. “Antitrust issues in Schumpeterian industries”. In:

American Economic Review 90.2 (2000), pp. 192–196.

118



[105] Barry Schwartz. “Self-determination: The tyranny of freedom.” In: American

psychologist 55.1 (2000), p. 79. issn: 1557987041.

[106] Orly Shoavi. How Top Mobile Apps Fight the SDK Fatigue and the Effect on

their Business Results. 2017. url: http://blog.safedk.com/sdk-

economy/sdk-fatigue-sdks-control-mobile/ (visited on 11/12/2018).

[107] Manuel E Sosa, Steven D Eppinger, and Craig M Rowles. “The misalignment

of product architecture and organizational structure in complex product

development”. In: Management science 50.12 (2004), pp. 1674–1689. issn:

0025-1909.

[108] Statista. Mobile gaming app revenue 2015-2020. 2018. url:

https://www.statista.com/statistics/511639/global-mobile-game-

app-revenue/ (visited on 11/12/2018).

[109] Statista. Mobile Gaming Industry - Statistics & Facts. 2018. url:

https://www.statista.com/topics/1906/mobile-gaming%20/ (visited on

11/12/2018).

[110] James H Stock and Motohiro Yogo. “Testing for weak instruments in linear

IV regression”. In: Identification and inference for econometric models:

Essays in honor of Thomas Rothenberg (2005).

[111] Sam Stoddard. Complexity Creep. 2017. url:

https://magic.wizards.com/en/articles/archive/latest-

developments/complexity-creep-2017-02-24 (visited on 11/12/2018).

[112] Karsten Strauss. The $2.4 Million-Per-Day Company: Supercell. 2013. url:

https://www.forbes.com/sites/karstenstrauss/2013/04/18/the-2-4-

million-per-day-company-supercell/%7B%5C#%7D23b37cdf6fc1 (visited

on 07/20/2018).

119



[113] E Burton Swanson. “The dimensions of maintenance”. In: Proceedings of the

2nd international conference on Software engineering. IEEE Computer

Society Press. 1976, pp. 492–497.

[114] Kalyan T Talluri and Garrett J Van Ryzin. The theory and practice of

revenue management. Vol. 68. Springer Science & Business Media, 2006.

isbn: 0387273913.

[115] Aaron Taube. People Spend Way More On Purchases In Free Apps Than

They Do Downloading Paid Apps. Dec. 2013. url:

https://www.businessinsider.com/in-app-purchases-dominate-

revenue-share-2013-12.

[116] Debora Viana Thompson, Rebecca W Hamilton, and Roland T Rust.

“Feature fatigue: When product capabilities become too much of a good

thing”. In: Journal of marketing research 42.4 (2005), pp. 431–442. issn:

0022-2437.

[117] Eray Tuzin et al. “Adopting integrated application lifecycle management

within a large-scale software company: An action research approach”. In:

Journal of Systems and Software 149 (2019), pp. 63–82.

[118] Viswanath Venkatesh et al. “User Acceptance of Information Technology:

Toward a Unified View”. In: MIS Quarterly 27.3 (2003), pp. 425–478.

[119] Shawnee K. Vickery et al. “Product Modularity, Process Modularity, and

New Product Introduction Performance: Does Complexity Matter?” In:

Production and Operations Management 25.4 (Apr. 2016), pp. 751–770. issn:

10591478. doi: 10.1111/poms.12495. url:

http://doi.wiley.com/10.1111/poms.12495.

[120] Andrew Waber. The Seasonality of Mobile Device Usage: Warmer Weather

Tempers Tech. 2014. url: https://marketingland.com/seasonality-

120



mobile-device-usage-warmer-weather-tempers-tech-95937 (visited on

11/12/2018).

[121] Qing Wang and Nick von Tunzelmann. “Complexity and the functions of the

firm: breadth and depth”. In: Research Policy 29.7-8 (2000), pp. 805–818.

issn: 0048-7333.

[122] Jane Webster and Hayes Ho. “Audience engagement in multimedia

presentations”. In: ACM SIGMIS Database: the DATABASE for Advances in

Information Systems 28.2 (1997), pp. 63–77. issn: 0095-0033.

[123] Jeffrey M. Wooldridge. Econometric analysis of cross section and panel data.

Cambridge: MIT Press, 2010.

[124] Valarie A Zeithaml. “Consumer perceptions of price, quality, and value: a

means-end model and synthesis of evidence”. In: The Journal of marketing

(1988), pp. 2–22. issn: 0022-2429.

121



Appendix A

Essay 1 Robustness Check Results

We present additional results using alternative variable operationalizations and model

specifications.
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Table A.1: Alternative DV IV Regression Results

lndownloads lncdd

diversityi,l −0.160∗∗∗ −0.316∗∗∗ −0.171∗∗∗ −0.175∗∗∗ −0.143∗ −0.352∗∗∗ −0.207∗∗∗ −0.195∗∗∗
(0.059) (0.057) (0.046) (0.055) (0.073) (0.065) (0.057) (0.065)

richnessi,l 0.046 ∗ ∗ −0.060 ∗ ∗ 0.057∗∗∗ 0.060∗∗∗ 0.056 ∗ ∗ −0.029 0.083∗∗∗ 0.085∗∗∗
(0.018) (0.025) (0.016) (0.018) (0.022) (0.027) (0.019) (0.019)

lnmkttrendc,l 0.287∗∗∗ 0.205 ∗ ∗ 0.669∗∗∗ 0.627∗∗∗ 0.257 ∗ ∗ 0.222∗ 0.633∗∗∗ 0.620∗∗∗
(0.103) (0.101) (0.144) (0.120) (0.130) (0.125) (0.187) (0.154)

lnmktactc,l 0.231 ∗ ∗ 0.166 0.192∗ 0.222 ∗ ∗ 0.248 0.180 0.156 0.145
(0.115) (0.114) (0.109) (0.111) (0.155) (0.151) (0.145) (0.151)

pubexpj,l −0.011∗ −0.009 −0.008 −0.007 −0.023∗∗∗ −0.022∗∗∗ −0.019∗∗∗ −0.016∗∗∗
(0.006) (0.006) (0.006) (0.006) (0.007) (0.006) (0.006) (0.006)

competitionc,t −0.173 −0.070 −0.186 −0.231∗ −0.020 0.087 0.029 0.010
(0.133) (0.130) (0.124) (0.127) (0.173) (0.169) (0.162) (0.166)

screenshotsi,l 0.195∗∗∗ 0.190∗∗∗ 0.159∗∗∗ 0.179∗∗∗ 0.246∗∗∗ 0.211∗∗∗ 0.209∗∗∗ 0.231∗∗∗
(0.039) (0.037) (0.036) (0.036) (0.047) (0.045) (0.043) (0.043)

ageresi,l −0.182∗∗∗ −0.191∗∗∗ −0.191∗∗∗ −0.201∗∗∗ −0.137∗ −0.179∗∗∗ −0.163 ∗ ∗ −0.136 ∗ ∗
(0.063) (0.059) (0.059) (0.059) (0.070) (0.065) (0.067) (0.066)

multicategoryi,l −0.227 ∗ ∗ −0.175∗ −0.218 ∗ ∗ −0.208 ∗ ∗ −0.146 −0.160 −0.144 −0.161
(0.099) (0.092) (0.092) (0.092) (0.114) (0.107) (0.107) (0.106)

multiplatformi,l 0.553∗∗∗ 0.487∗∗∗ 0.518∗∗∗ 0.546∗∗∗ 0.641∗∗∗ 0.534∗∗∗ 0.595∗∗∗ 0.565∗∗∗
(0.147) (0.129) (0.138) (0.138) (0.162) (0.149) (0.153) (0.151)

appsizei,l 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

updatesi,t 0.932∗∗∗ 0.891∗∗∗ 0.934∗∗∗ 0.949∗∗∗ 1.690∗∗∗ 1.668∗∗∗ 1.673∗∗∗ 1.705∗∗∗
(0.086) (0.080) (0.082) (0.083) (0.099) (0.093) (0.094) (0.094)

sincelaunchi,t −0.001 −0.002 −0.001 −0.001 0.006 ∗ ∗ 0.005 ∗ ∗ 0.005 ∗ ∗ 0.006 ∗ ∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

diversityi,l × richnessi,l 0.018∗∗∗ 0.017∗∗∗
(0.003) (0.003)

lnmkactc,l × diversityi,l −0.094∗∗∗ −0.095∗∗∗
(0.022) (0.028)

lnmkactc,l × richnessi,l −0.045∗∗∗ −0.050∗∗∗
(0.008) (0.010)

Constant 4.028∗∗∗ 5.094∗∗∗ 4.599∗∗∗ 4.300∗∗∗ 3.342 ∗ ∗ 4.884∗∗∗ 4.443∗∗∗ 4.519∗∗∗
(1.015) (0.965) (0.908) (0.933) (1.310) (1.232) (1.163) (1.218)

Subcategory FE YES YES YES YES YES YES YES YES
Observations 1,782 1,782 1,782 1,782 1,782 1,782 1,782 1,782
R-squared 0.259 0.267 0.261 0.263 0.303 0.303 0.304 0.305

Robust standard errors clustered by publisher in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.10)
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Table A.2: Alternative Variable Operationalization Results

CF Filter Max Richness

diversityi,l −0.257∗∗∗ −0.380∗∗∗ −0.222∗∗∗ −0.338∗∗∗ −0.164∗∗∗ −0.292∗∗∗ −0.172∗∗∗ −0.141∗∗∗
(0.079) (0.070) (0.061) (0.070) (0.054) (0.070) (0.037) (0.047)

richnessi,l 0.072∗∗∗ −0.039 0.097∗∗∗ 0.122∗∗∗ 0.069∗ −0.145 ∗ ∗ 0.140∗∗∗ 0.098 ∗ ∗
(0.025) (0.033) (0.021) (0.024) (0.042) (0.066) (0.038) (0.039)

lnmkttrendc,l −0.096 −0.120 0.166 −0.116 0.438∗∗∗ 0.381∗∗∗ 0.792∗∗∗ 0.541∗∗∗
(0.159) (0.147) (0.165) (0.154) (0.112) (0.103) (0.192) (0.137)

lnmktactc,l 0.452∗∗∗ 0.472∗∗∗ 0.438∗∗∗ 0.400∗∗∗ 0.551∗∗∗ 0.462∗∗∗ 0.371 ∗ ∗ 0.427∗∗∗
(0.116) (0.106) (0.110) (0.112) (0.157) (0.144) (0.149) (0.149)

pubexpj,l −0.018 ∗ ∗ −0.012∗ −0.021∗∗∗ −0.016 ∗ ∗ −0.013∗ −0.009 −0.007 −0.008
(0.007) (0.007) (0.007) (0.007) (0.008) (0.007) (0.007) (0.007)

competitionc,t −0.329∗ −0.250 −0.305∗ −0.223 −0.874∗∗∗ −0.761∗∗∗ −0.717∗∗∗ −0.781∗∗∗
(0.171) (0.156) (0.159) (0.157) (0.168) (0.155) (0.160) (0.158)

screenshotsi,l 0.230∗∗∗ 0.225∗∗∗ 0.228∗∗∗ 0.210∗∗∗ 0.248∗∗∗ 0.254∗∗∗ 0.177∗∗∗ 0.209∗∗∗
(0.050) (0.048) (0.046) (0.047) (0.048) (0.048) (0.044) (0.045)

ageresi,l −0.189 ∗ ∗ −0.222∗∗∗ −0.180 ∗ ∗ −0.166 ∗ ∗ −0.157∗ −0.204 ∗ ∗ −0.170 ∗ ∗ −0.136∗
(0.088) (0.082) (0.084) (0.083) (0.087) (0.083) (0.082) (0.078)

multicategoryi,l −0.215 −0.240∗ −0.223∗ −0.181 −0.164 −0.099 −0.260 ∗ ∗ −0.220∗
(0.136) (0.125) (0.126) (0.127) (0.136) (0.129) (0.120) (0.127)

multiplatformi,l 0.879∗∗∗ 0.917∗∗∗ 0.815∗∗∗ 0.845∗∗∗ 0.957∗∗∗ 0.978∗∗∗ 0.850∗∗∗ 0.904∗∗∗
(0.167) (0.152) (0.159) (0.157) (0.178) (0.158) (0.161) (0.169)

appsizei,l 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

updatesi,t 1.108∗∗∗ 1.064∗∗∗ 1.177∗∗∗ 1.142∗∗∗ 1.100∗∗∗ 1.043∗∗∗ 1.075∗∗∗ 1.119∗∗∗
(0.140) (0.127) (0.116) (0.118) (0.127) (0.117) (0.126) (0.125)

sincelaunchi,t 0.012∗∗∗ 0.012∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.013∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.013∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

diversityi,l × richnessi,l 0.017∗∗∗ 0.043∗∗∗
(0.003) (0.010)

lnmkactc,l × diversityi,l −0.048∗∗∗ −0.091∗∗∗
(0.016) (0.032)

lnmkactc,l × richnessi,l −0.009∗ −0.080 ∗ ∗
(0.005) (0.031)

Constant 4.304∗∗∗ 4.593∗∗∗ 3.975∗∗∗ 4.539∗∗∗ 3.970∗∗∗ 4.888∗∗∗ 5.795∗∗∗ 5.070∗∗∗
(1.187) (1.082) (1.072) (1.086) (1.355) (1.267) (1.250) (1.305)

Subcategory FE YES YES YES YES YES YES YES YES
Observations 1,782 1,782 1,782 1,782 1,782 1,782 1,782 1,782
R-squared 0.287 0.298 0.287 0.285 0.269 0.278 0.273 0.274

Robust standard errors clustered by publisher in parentheses (*** p < 0.01, ** p < 0.05, * p < 0.10)
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Table A.3: OLS Regression Results

(1) (2) (3) (4)

diversityi,l −0.195∗∗∗ −0.295∗∗∗ −0.181∗∗∗ −0.194∗∗∗
(0.070) (0.070) (0.068) (0.070)

richnessi,l 0.069 ∗ ∗ −0.045 0.069 ∗ ∗ 0.072∗∗∗
(0.027) (0.039) (0.027) (0.027)

lnmkttrendc,l 0.302 0.297 0.305 0.302
(0.190) (0.190) (0.193) (0.192)

lnmktactc,l 0.132 0.127 0.409 0.231
(0.139) (0.138) (0.267) (0.208)

pubexpj,l −0.017 −0.017 −0.017 −0.017
(0.019) (0.018) (0.019) (0.019)

competitionc,t −0.602∗∗∗ −0.553∗∗∗ −0.608∗∗∗ −0.603∗∗∗
(0.208) (0.204) (0.211) (0.209)

screenshotsi,l 0.202∗∗∗ 0.210∗∗∗ 0.200∗∗∗ 0.202∗∗∗
(0.064) (0.065) (0.064) (0.064)

ageresi,l −0.272∗∗∗ −0.266∗∗∗ −0.274∗∗∗ −0.272∗∗∗
(0.101) (0.099) (0.101) (0.101)

multicategoryi,l −0.381 ∗ ∗ −0.345∗ −0.375 ∗ ∗ −0.376 ∗ ∗
(0.188) (0.182) (0.188) (0.187)

multiplatformi,l 0.907∗∗∗ 0.908∗∗∗ 0.906∗∗∗ 0.908∗∗∗
(0.238) (0.227) (0.239) (0.238)

appsizei,l 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.000) (0.000) (0.000) (0.000)

updatesi,t 0.939∗∗∗ 0.921∗∗∗ 0.942∗∗∗ 0.940∗∗∗
(0.213) (0.204) (0.213) (0.213)

sincelaunchi,t 0.012∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.012∗∗∗
(0.003) (0.003) (0.003) (0.003)

diversityi,l ∗ richnessi,l 0.015∗∗∗
(0.004)

lnmkactc,l ∗ diversityi,l −0.056
(0.042)

lnmkactc,l ∗ richnessi,l −0.011
(0.015)

Constant 6.894∗∗∗ 7.248∗∗∗ 6.795∗∗∗ 6.853∗∗∗
(1.622) (1.606) (1.633) (1.630)

Subcategory FE YES YES YES YES
Observations 1,782 1,782 1,782 1,782
R-squared 0.290 0.299 0.291 0.290
Number of Publishers 711 711 711 711

Robust standard errors clustered by publisher in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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Table A.4: IV Regression Results on Truncated Sample

(1) (2) (3) (4)

diversityi,l −0.209∗∗∗ −0.401∗∗∗ −0.373∗∗∗ −0.357∗∗∗
(0.079) (0.069) (0.065) (0.057)

richnessi,l 0.060 ∗ ∗ −0.104∗∗∗ 0.120∗∗∗ 0.117∗∗∗
(0.024) (0.031) (0.021) (0.021)

lnmkttrendc,l 0.373∗∗∗ 0.265 ∗ ∗ 0.467∗∗∗ 0.680∗∗∗
(0.119) (0.110) (0.136) (0.193)

lnmktactc,l 0.471∗∗∗ 0.336 ∗ ∗ 0.288∗ 0.297 ∗ ∗
(0.161) (0.147) (0.149) (0.150)

pubexpj,l −0.007 −0.002 −0.002 −0.002
(0.007) (0.007) (0.007) (0.007)

competitionc,t −0.873∗∗∗ −0.689∗∗∗ −0.728∗∗∗ −0.743∗∗∗
(0.171) (0.159) (0.159) (0.161)

screenshotsi,l 0.210∗∗∗ 0.224∗∗∗ 0.161∗∗∗ 0.146∗∗∗
(0.048) (0.048) (0.045) (0.044)

ageresi,l −0.148∗ −0.217∗∗∗ −0.081 −0.105
(0.088) (0.082) (0.079) (0.083)

multicategoryi,l −0.123 −0.115 −0.199 −0.204∗
(0.136) (0.123) (0.122) (0.120)

multiplatformi,l 0.940∗∗∗ 0.876∗∗∗ 0.840∗∗∗ 0.839∗∗∗
(0.169) (0.150) (0.157) (0.153)

appsizei,l 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.000) (0.000) (0.000) (0.000)

updatesi,t 0.974∗∗∗ 0.923∗∗∗ 0.964∗∗∗ 0.931∗∗∗
(0.126) (0.111) (0.121) (0.123)

sincelaunchi,t 0.015∗∗∗ 0.016∗∗∗ 0.014∗∗∗ 0.015∗∗∗
(0.002) (0.002) (0.002) (0.002)

diversityi,l × richnessi,l 0.025∗∗∗
(0.003)

lnmkactc,l × diversityi,l −0.031∗∗∗
(0.010)

lnmkactc,l × richnessi,l −0.087∗∗∗
(0.031)

Constant 4.228∗∗∗ 6.094∗∗∗ 6.428∗∗∗ 6.417∗∗∗
(1.373) (1.251) (1.285) (1.252)

Subcategory FE YES YES YES YES
Observations 1,724 1,724 1,724 1,724
R-squared 0.247 0.259 0.243 0.244
Number of Publishers 687 687 687 687

Robust standard errors clustered by publisher in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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Table A.5: IV Regression Results on Non-Holiday Apps Sample

(1) (2) (3) (4)

diversityi,l −0.244∗∗∗ −0.400∗∗∗ −0.361∗∗∗ −0.359∗∗∗
(0.082) (0.069) (0.071) (0.061)

richnessi,l 0.072∗∗∗ −0.077 ∗ ∗ 0.126∗∗∗ 0.122∗∗∗
(0.025) (0.033) (0.022) (0.021)

lnmkttrendc,l 0.427∗∗∗ 0.366∗∗∗ 0.589∗∗∗ 0.700∗∗∗
(0.119) (0.111) (0.139) (0.202)

lnmktactc,l 0.517∗∗∗ 0.441∗∗∗ 0.364 ∗ ∗ 0.367 ∗ ∗
(0.160) (0.147) (0.149) (0.149)

pubexpj,l −0.010 −0.003 −0.006 −0.006
(0.008) (0.007) (0.007) (0.007)

competitionc,t −0.875∗∗∗ −0.741∗∗∗ −0.773∗∗∗ −0.765∗∗∗
(0.174) (0.162) (0.161) (0.163)

screenshotsi,l 0.237∗∗∗ 0.246∗∗∗ 0.180∗∗∗ 0.168∗∗∗
(0.048) (0.048) (0.045) (0.045)

ageresi,l −0.189 ∗ ∗ −0.234∗∗∗ −0.161 ∗ ∗ −0.183 ∗ ∗
(0.088) (0.082) (0.080) (0.083)

multicategoryi,l −0.153 −0.142 −0.239 ∗ ∗ −0.241 ∗ ∗
(0.135) (0.123) (0.120) (0.120)

multiplatformi,l 1.039∗∗∗ 1.004∗∗∗ 0.971∗∗∗ 0.949∗∗∗
(0.173) (0.156) (0.163) (0.161)

appsizei,l 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.000) (0.000) (0.000) (0.000)

updatesi,t 1.069∗∗∗ 1.031∗∗∗ 1.082∗∗∗ 1.035∗∗∗
(0.124) (0.112) (0.124) (0.123)

sincelaunchi,t 0.012∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.012∗∗∗
(0.002) (0.002) (0.002) (0.002)

diversityi,l × richnessi,l 0.022∗∗∗
(0.003)

lnmkactc,l × diversityi,l −0.035∗∗∗
(0.010)

lnmkactc,l × richnessi,l −0.082 ∗ ∗
(0.033)

Constant 4.409∗∗∗ 5.583∗∗∗ 6.323∗∗∗ 6.344∗∗∗
(1.389) (1.261) (1.288) (1.265)

Subcategory FE YES YES YES YES
Observations 1,762 1,762 1,762 1,762
R-squared 0.278 0.288 0.277 0.277
Number of Publishers 710 710 710 710

Robust standard errors clustered by publisher in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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Appendix B

Essay 2 Robustness Check Results

We present additional results using alternative variable operationalizations and model

specifications.
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Table B.1: Difference-in-Differences Estimation Results

DV: lndownijt (1) (2) (3) (4)

aftert −0.023 ∗ ∗∗ −0.034 ∗ ∗ −0.024∗ −0.230
(0.009) (0.016) (0.014) (0.249)

treatij 1.372 ∗ ∗∗ 1.192 ∗ ∗∗ 1.910 ∗ ∗∗ −0.353
(0.199) (0.183) (0.259) (1.226)

aftert × treatij 0.051 ∗ ∗∗ 0.096 ∗ ∗∗ 0.058 ∗ ∗ −0.054
(0.020) (0.034) (0.029) (0.533)

upsdijt 0.001 −0.007 ∗ ∗ 0.001 0.001
(0.001) (0.003) (0.001) (0.001)

hhict 0.548 0.546 0.548 0.545
(0.447) (0.447) (0.447) (0.449)

ratingijt 0.144 0.145 0.144 0.144
(0.164) (0.164) (0.164) (0.164)

mkttrct 0.424 ∗ ∗∗ 0.424 ∗ ∗∗ 0.424 ∗ ∗∗ 0.334 ∗ ∗∗
(0.031) (0.031) (0.031) (0.068)

sincelaunchijt −0.004 ∗ ∗∗ −0.004 ∗ ∗∗ −0.004 ∗ ∗∗ −0.004 ∗ ∗∗
(0.000) (0.000) (0.000) (0.000)

lcstage2ijt 0.955 ∗ ∗∗ 0.955 ∗ ∗∗ 1.954 ∗ ∗∗ 0.955 ∗ ∗∗
(0.183) (0.183) (0.241) (0.183)

lcstage3ijt 0.006 0.005 0.349∗ 0.006
(0.114) (0.114) (0.199) (0.114)

aftert × upsdijt 0.002∗
(0.001)

treatij × upsdijt 0.016 ∗ ∗∗
(0.006)

aftert × treatij × upsdijt −0.006 ∗ ∗∗
(0.002)

aftert × lcstage2ijt 0.013
(0.026)

aftert × lcstage3ijt −0.005
(0.019)

treatij × lcstage2ijt −1.960 ∗ ∗∗
(0.265)

treatij × lcstage3ijt −0.685 ∗ ∗∗
(0.265)

aftert × treatij × lcstage2ijt −0.088 ∗ ∗
(0.044)

aftert × treatij × lcstage3ijt 0.007
(0.045)

aftert × mkttrct 0.019
(0.022)

treatij × mkttrct 0.155
(0.108)

aftert × treatij × mkttrct 0.009
(0.047)

Constant −1.114 −1.032 −1.383∗ −0.108
(0.815) (0.813) (0.835) (1.044)

App FE YES YES YES YES
Month FE YES YES YES YES
Weekday FE YES YES YES YES
Observations 20,254 20,254 20,254 20,254
R-squared 0.666 0.668 0.674 0.667
Number of appid 433 433 433 433

Robust standard errors clustered by app in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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Table B.2: Survival Analysis Results

(1) (2) (3)
DV: Duration cox PH exponential RE weibull RE

Stage1 Update 0.134 ∗ ∗∗ 0.142 ∗ ∗∗ 0.118 ∗ ∗∗
(0.062) (0.061) (0.055)

Stage2 Update 0.174 ∗ ∗∗ 0.187 ∗ ∗∗ 0.152 ∗ ∗∗
(0.010) (0.089) (0.079)

Stage3 Update 0.633 0.601 0.650
(19.070) (0.326) (0.326)

upsd 1.011 ∗ ∗∗ 1.014 ∗ ∗∗ 1.010 ∗ ∗
(0.003) (0.004) (0.004)

Stage1 Patches 0.085 ∗ ∗∗ 0.088 ∗ ∗∗ 0.075 ∗ ∗∗
(0.000) (0.053) (0.047)

Stage2 Patches 0.111 ∗ ∗∗ 0.117 ∗ ∗∗ 0.099 ∗ ∗∗
(0.024) (0.077) (0.069)

Stage3 Patches 0.000 ∗ ∗∗ 0.000 ∗ ∗∗ 0.000 ∗ ∗∗
(0.000) (0.000) (0.000)

Log Length 0.998 0.998∗ 0.998∗
(0.001) (0.001) (0.001)

Avg. Inter time 1.000 1.001 0.999
(0.000) (0.001) (0.001)

First day hype 0.867 ∗ ∗∗ 0.861 ∗ ∗ 0.862 ∗ ∗
(0.044) (0.059) (0.061)

App size 0.924 0.914 0.926
(0.083) (0.182) (0.187)

HHI 0.697 0.294 0.609
(1.069) (0.440) (0.851)

Age Restriction 1.122 1.128 1.114
(0.083) (0.152) (0.152)

Avg. DAU 1.000 1.000 1.000
(0.000) (0.000) (0.000)

mkttr 0.865 ∗ ∗∗ 0.875 0.861
(0.028) (0.101) (0.098)

Observations 821,841 821,841 821,841
Number of appid 2,157 2,157 2,157

Robust standard errors clustered by app in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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Table B.3: 5 Stage Life Cycle Stage Estimation Result

DV: lndownijt Coefficient Standard Error

aftert 0.029 (0.055)
aftert × treatij 0.074 ∗ ∗∗ (0.025)
lcstage2ijt −0.291 ∗ ∗ (0.114)
lcstage3ijt −0.230 (0.145)
lcstage4ijt 0.098 (0.078)
lcstage5ijt 0.301 ∗ ∗∗ (0.097)
aftert × lcstage2ijt 0.000 (0.014)
aftert × lcstage3ijt −0.044 ∗ ∗∗ (0.016)
aftert × lcstage4ijt −0.052 ∗ ∗∗ (0.019)
aftert × lcstage5ijt −0.039 ∗ ∗∗ (0.012)
treatij × lcstage2ijt 1.185 ∗ ∗∗ (0.284)
treatij × lcstage3ijt 0.346 (0.336)
treatij × lcstage4ijt −0.276 (0.237)
treatij × lcstage5ijt −1.209 ∗ ∗∗ (0.280)
aftert × treatij × lcstage2ijt −0.189 ∗ ∗∗ (0.048)
aftert × treatij × lcstage3ijt −0.041 (0.044)
aftert × treatij × lcstage4ijt −0.027 (0.046)
aftert × treatij × lcstage5ijt 0.008 (0.039)
upsdijt −0.000 (0.000)
hhict −0.146∗ (0.088)
ratingijt −0.158∗ (0.084)
mkttrct 0.420 ∗ ∗∗ (0.026)
sincelaunchijt 0.003 (0.004)
Constant 0.556 (0.909)

Weekday FE YES
Month FE YES
Observations 20,254
R-squared 0.221
Number of updateid 4,052

Robust standard errors clustered by app in parentheses
(*** p < 0.01, ** p < 0.05, * p < 0.10)
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